已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點P在BC上移動,則PA+PD的最小值為
2
17
2
17
分析:延長AB到A′,使得A′B=AB,連接A′D交BC于P,此時PA+PD最小,即當P在AD的中垂線上時,PA+PD取最小值,然后在直角△AA′D中,利用勾股定理即可求解.
解答:解:過點D作DE⊥BC于E,則四邊形ABED是矩形,BE=AD=2,
則EC=BC-BE=CD-BE=5-2=3,
在直角△DCE中,DE=
CD2-EC2
=
52-32
=4,
又∵四邊形ABED是矩形,
∴AB=DE=4,
延長AB到A′,使得A′B=AB,連接A′D交BC于P,此時PA+PD最小,即當P在AD的中垂線上時,PA+PD取最小值,
∴AA′=2AB=8,
在直角△AA′D中,DA′=
AD2+AA′2
=
4+64
=2
17

則PA+PD的最小值為2
17
點評:此題主要考查了利用軸對稱求最短路線問題,此題綜合性較強,考查了梯形一般輔助線的作法、勾股定理、三角形的面積計算等知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點P在BC上移動,則當PA+PD取最小值時,△A精英家教網(wǎng)PD中邊AP上的高為(  )
A、
2
17
17
B、
4
17
17
C、
8
17
17
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=
12
CD,E為CD的中點.
(1)如圖(1)當點M在線段DE上時,以AM為腰作等腰直角三角形AMN,判斷NE與MB的位置關(guān)系和數(shù)量關(guān)系,請直接寫出你的結(jié)論;
(2)如圖(2)當點M在線段EC上時,其他條件不變,(1)中的結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD如圖放置在平面直角坐標系中,∠DCB=30°,AB邊在y軸上,點D的橫坐標為6,CQ⊥x軸,垂足為Q,點Q的橫坐標為12,過CD的直線l交x軸于點E,E點坐標為(18,0).
(1)求直線l的解析式,以及點A和點B的坐標;
(2)P為線段CD上一動點,連結(jié)PQ、OP,探究△POQ的周長,并求出當周長最小時,P的坐標及此時的該三角形的周長;
(3)點N從點Q(12,0)出發(fā),沿著x軸以每秒1個單位長度的速度向點O運動,同時另一動點M從點B開始沿B-C-D-A的方向繞梯形ABCD運動,運動速度為每秒為2個單位長度,當其中一個點到達終點時,另一點也停止運動,設(shè)運動時間為t秒,連結(jié)MO和MN,試探究當t為何值時MO=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,點P從A點出發(fā),沿AD邊以1的速度向點D運動,點Q從點C開始沿CB邊以3的速度向點B運動,P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t.
(1)當t為何值時,四邊形PQCD為平行四邊形?
(2)當t為何值時,四邊形PQCD為等腰梯形?

查看答案和解析>>

同步練習(xí)冊答案