【題目】如圖,△ABC中,AB=AC,AD=BD=BC,則∠A的度數(shù)是( )
A.30°
B.36°
C.45°
D.20°
【答案】B
【解析】解:設(shè)∠A=x°.
∵BD=AD,
∴∠A=∠ABD=x°,(等邊對等角)
∠BDC=∠A+∠ABD=2x°,(三角形的外角等于相鄰兩內(nèi)角的和)
∵BD=BC,
∴∠BDC=∠BCD=2x°,(等邊對等角)
∵AB=AC,
∴∠ABC=∠BCD=2x°,(等邊對等角)
在△ABC中x+2x+2x=180,(三角形的內(nèi)角和等于180°)
解得:x=36,
∴∠A=36°.
故答案為:B.
等腰三角形的性質(zhì)1:等腰三角形的兩個底角相等(簡寫“等邊對等角”)
圖中有多個與∠A有直接和間接關(guān)系的角,設(shè)其中∠A為未知量,代數(shù)思維解決幾何問題。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的負(fù)半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y =的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C為的中點,D、E分別為OA,OB的中點,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P位于x軸下方,距離x軸5個單位,位于y軸右方,距離y軸3個單位,那么P點的坐標(biāo)是( )
A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】地球上的海洋面積約為36105.9萬平方千米,用科學(xué)記數(shù)法(保留三個有效數(shù)字)表示為平方千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,點D在射線BC上(與B、C兩點不重合),以AD為邊作正方形ADEF,使點E與點B在直線AD的異側(cè),射線BA與射線CF相交于點G.
(1)若點D在線段BC上,如圖1.
①依題意補全圖1;
②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;
(2)若點D在線段BC的延長線上,且G為CF中點,連接GE,AB=,則GE的長為_____,并簡述求GE長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD,且AC=8,BD=4,各邊中點分別為A1、B1、C1、D1,順次連接得到四邊形A1B1C1D1,再取各邊中點A2、B2、C2、D2,順次連接得到四邊形A2B2C2D2,…,依此類推,這樣得到四邊形AnBnCnDn,則四邊形AnBnCnDn的面積為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由四舍五入法得到的近似數(shù)8.30萬,它是精確到( )位.
A. 精確到百分位 B. 精確到百位 C. 精確到千位 D. 精確到萬位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com