圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.
精英家教網(wǎng)
(1)直接寫出單位正三角形的高與面積;
(2)圖1中的平行四邊形ABCD含有多少個(gè)單位正三角形?平行四邊形ABCD的面積是多少?
(3)求出圖1中線段AC的長(zhǎng)(可作輔助線);
(4)求出圖2中四邊形EFGH的面積.
分析:(1)由正三角形的邊長(zhǎng)為1,做底邊上的高h(yuǎn),利用勾股定理可求h=
3
2
,S=
3
4

(2)把平行四邊形所占的網(wǎng)格中的正三角形數(shù)一下即可,有24個(gè),那么S?=6
3
;
(3)作BC邊上的高AK,垂足為K,據(jù)圖可知,∠B=60°,則∠BAK=30°,由AB=6,利用勾股定理,可求BK=
3
2
,AK=
3
2
3
,CK=
5
2
,利用勾股定理,可求AC=
13

(4)如圖,可構(gòu)造平行四邊形,比如以FG為對(duì)角線構(gòu)造平行四邊形FPGM,SFPGM=6S,故S△FGM=3S單位正三角形,同理可得其他部分的面積,于是SEFGH=(3+4+8+9+8)×
3
4
=8
3
解答:解:(1)單位正三角形的高為
3
2
,面積為
3
4
.(1分)

(2)平行四邊形ABCD含有24個(gè)單位正三角形.(2分)
其面積為24×
3
4
=6
3
(3分)

(3)過(guò)點(diǎn)A作AK⊥BC于K(如圖1).
在Rt△ACK中,AK=
3
2
3
,KC=
5
2

AC=
AK2+KC2
=
(
3
2
3
)
2
+(
5
2
)
2
=
13
(4分)

(4)解法一:如圖2所示,將四邊形EFGH分割成五部分.
以FG為對(duì)角線構(gòu)造平行四邊形FPGM,
∵平行四邊形FPGM中含有6個(gè)單位正三角形,
∴S△FGM=3S單位正三角形
同理可得到其他四部分面積.
∴S四邊形EFGH=(3+4+8+9+8)×
3
4
=8
3
(8分)

解法二:如圖3所示,構(gòu)造平行四邊形EQSR.
過(guò)點(diǎn)F作FT⊥QG于T,則
S△FQG=
1
2
FT•QG=
1
2
×
3
3
2
×4=3
3

同理可求S△GSH=
3
,
S△EHR=6
3
,S平行四邊形EQSR=18
3

∴S四邊形EFGH=S平行四邊形EQSR-S△FQG-S△GSH-S△EHR
=18
3
-3
3
-
3
-6
3
=8
3
.(8分)
精英家教網(wǎng)
點(diǎn)評(píng):本題利用了正三角形的性質(zhì),勾股定理,有一個(gè)銳角是30°的直角三角形的性質(zhì),及構(gòu)造平行四邊求圖形面積等知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.
精英家教網(wǎng)
(1)直接寫出單位正三角形的高為
 
,面積為
 
;
(2)圖1中的?ABCD含有
 
個(gè)單位正三角形,?ABCD的面積是
 

(3)圖1中線段AC的長(zhǎng)為
 
;
(4)圖2中四邊形EFGH的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.

(1)直接寫出單位正三角形的高與面積;
(2)圖1中的平行四邊形ABCD含有多少個(gè)單位正三角形?平行四邊形ABCD的面積是多少?
(3)求出圖1中線段AC的長(zhǎng)(可作輔助線);
(4)求出圖2中四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2005•吉林)圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.

(1)直接寫出單位正三角形的高與面積;
(2)圖1中的平行四邊形ABCD含有多少個(gè)單位正三角形?平行四邊形ABCD的面積是多少?
(3)求出圖1中線段AC的長(zhǎng)(可作輔助線);
(4)求出圖2中四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2005•吉林)圖中的虛線網(wǎng)格我們稱之為正三角形網(wǎng)格,它的每一個(gè)小三角形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正三角形,這樣的三角形稱為單位正三角形.

(1)直接寫出單位正三角形的高為______

查看答案和解析>>

同步練習(xí)冊(cè)答案