【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1 ,高為DE,在斜坡下的點C處測得樓頂B的仰角為64°,在斜坡上的點D處測得樓頂B的仰角為45°,其中AC、E在同一直線上.

1)求斜坡CD的高度DE

2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).

【答案】1)斜坡CD的高度DE5米;2大樓AB的高度是34米.

【解析】試題分析:1)根據(jù)在大樓AB的正前方有一斜坡CDCD=13米,坡度為1 ,高為DE,可以求得DE的高度;

2)根據(jù)銳角三角函數(shù)和題目中的數(shù)據(jù)可以求得大樓AB的高度.

試題解析:(1∵在大樓AB的正前方有一斜坡CD,CD=13米,坡度為1 ,

設(shè)DE=5x米,則EC=12x米,

5x2+12x2=132,

解得x=1,

5x=5,12x=12,

DE=5米,EC=12米,

故斜坡CD的高度DE5米;

2)過點DAB的垂線,垂足為H,設(shè)DH的長為x,

由題意可知∠BDH=45°,

BH=DH=xDE=5,

在直角三角形CDE,根據(jù)勾股定理可求CE=12,AB=x+5,AC=x-12,

tan64°=

2=

解得,x=29,AB=x+5=34

即大樓AB的高度是34米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程.

1)當(dāng)時,利用根的判別式判斷方程根的情況,

2)若方程有兩個相等的非零實數(shù)根,寫出一組滿足條件的的值,并求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形,長為,若直線分成面積比為的兩部分,則的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.

1)他把“□”猜成3,請你解二元一次方程組

2)張老師說:“你猜錯了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x2+4x﹣9=0時,原方程可變形為(  )

A. x+22=1 B. x+22=7 C. x+22=13 D. x+22=19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=2,AC=2,點DBC的中點,點E是邊AB上一動點,沿DE所在直線把BDE翻折到B′DE的位置,B′DAB于點F.若AB′F為直角三角形,則AE的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點 .

(1)求拋物線的解析式和A、B兩點的坐標(biāo);

(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;

(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求M點的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.

例如,如圖1,正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.

(1)如果P是以(3,4)為圓心,2為半徑的圓,那么點O(0,0)到P的距離為   ;

(2)①求點M(3,0)到直線了y=x+4的距離:

如果點N(0,a)到直線y=x+4的距離為2,求a的值;

(3)如果點G(0,b)到拋物線y=x2的距離為3,請直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃購買排球、籃球,已知購買1個排球與1個籃球的總費用為180元;3個排球與2個籃球的總費用為420元.

(1)求購買1個排球、1個籃球的費用分別是多少元?

(2)若該學(xué)校計劃購買此類排球和籃球共60個,并且籃球的數(shù)量不超過排球數(shù)量的2倍.求至少需要購買多少個排球?并求出購買排球、籃球總費用的最大值?

查看答案和解析>>

同步練習(xí)冊答案