【題目】將直角三角板ABC按如圖1放置,直角頂點C與坐標原點重合,直角邊AC、BC分別與x軸和y軸重合,其中∠ABC=30°.將此三角板沿y軸向下平移,當點B平移到原點O時運動停止.設平移的距離為m,平移過程中三角板落在第一象限部分的面積為s,s關于m的函數圖象(如圖2所示)與m軸相交于點P(,0),與s軸相交于點Q.
(1)試確定三角板ABC的面積;
(2)求平移前AB邊所在直線的解析式;
(3)求s關于m的函數關系式,并寫出Q點的坐標.
【答案】(1)S=;(2)y=﹣x+;(3)s=﹣m+,(0≤m≤),Q(0,).
【解析】
(1)根據點P坐標可得OB的長,根據含30°角的直角三角形的性質及勾股定理可求出OA的長,即可求出△ABC的面積;
(2)設AB的解析式y=kx+b,把A(1,0),B(0,)代入列方程組即可求出b、k的值,進而可得直線AB解析式;
(3)設移動過程中,AB與x軸的交點為D,可得OB=-m,根據含30°角的直角三角形的性質可用m表示出OD的長,即可得出s關于m的關系式,把m=0代入即可求出點Q坐標.
∵與m軸相交于點P(,0),
∴m=時,s=0,
∴OB=,
∵∠ABC=30°,
∴AB=2OA,
∴OA2+OB2=AB2,即OA2+3=4OA2,
解得:OA=1,(負值舍去)
∴S△ABC==.
(2)∵B(0,),A(1,0),
設AB的解析式y=kx+b,
∴,
∴,
∴y=﹣x+;
(3)設移動過程中,AB與x軸的交點為D,
∵OB=,平移的距離為m,
∴平移后OB=﹣m,
∵∠ABC=30°,
∴BD=2OD,
∴OD2+OB2=BD2,即OD2+(﹣m)2=4OD2
∴OD=1﹣m,
∵s在第一象限,OB=,
∴0≤m≤,
∴s=×(﹣m)×(1﹣m)=﹣m+(0≤m≤),
當m=0時,s=,
∴Q(0,).
科目:初中數學 來源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形例如:某三角形三邊長分別是5,6和8,因為,所以這個三角形是常態(tài)三角形.
(1)若△ABC三邊長分別是2,和4,則此三角形 常態(tài)三角形(填“是”或“不是”);
(2)如圖,Rt△ABC中,∠ACB=90°,BC=6,點D為AB的中點,連接CD,CD=AB, 若△ACD是常態(tài)三角形,求△ABC的面積;,
(3)若Rt△ABC是常態(tài)△,斜邊是,則此三角形的兩直角邊的和= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,點D在AB上,點E在BC上,且AD=BE,BD=AC.
(1)求證:CD=ED
(2)直接寫出圖中所有是∠ACD的2倍的角.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△A'BC'是由Rt△ABC繞B點順時針旋轉而得,且點A,B,C'在同一條直線上,在Rt△ABC中,若∠C=90°,BC=2,AB=4,則Rt△ABC旋轉到Rt△A'BC'所掃過的面積為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(個)與甲加工時間之間的函數圖象為折線,如圖所示.
(1)這批零件一共有 個,甲機器每小時加工 個零件,乙機器排除故障后每小時加工 個零件;
(2)當時,求與之間的函數解析式;
(3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數相等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著移動互聯(lián)網的快速發(fā)展,基于互聯(lián)網的共享單車應運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內使用共享單車的次數分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數據的中位數是 ,眾數是 ;
(2)計算這10位居民一周內使用共享單車的平均次數;
(3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內使用共享單車的總次數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,下列結論:①AC平分∠PAD;②∠APO=∠DCO;③△OPC是等邊三角形;④AC=AO+AP;其中正確的序號是( )
A.①③④B.②③C.①②④D.①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數根x1,x2.
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網+”自主創(chuàng)業(yè),銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com