【題目】如圖,點(diǎn)A是x軸非負(fù)半軸上的動(dòng)點(diǎn),點(diǎn)B坐標(biāo)為(0,4),M是線(xiàn)段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°得到點(diǎn)C,過(guò)點(diǎn)C作x軸的垂線(xiàn),垂足為F,過(guò)點(diǎn)B作y軸的垂線(xiàn)與直線(xiàn)CF相交于點(diǎn)E,連接AC,BC,設(shè)點(diǎn)A的橫坐標(biāo)為t.
(Ⅰ)當(dāng)t=2時(shí),求點(diǎn)M的坐標(biāo);
(Ⅱ)設(shè)ABCE的面積為S,當(dāng)點(diǎn)C在線(xiàn)段EF上時(shí),求S與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(Ⅲ)當(dāng)t為何值時(shí),BC+CA取得最小值.
【答案】(1)(1,2);(2)S=t+8(0≤t≤8);(3)當(dāng)t=0時(shí),BC+AC有最小值
【解析】試題分析:(I)過(guò)M作MG⊥OF于G,分別求OG和MG的長(zhǎng)即可;
(II)如圖1,同理可求得AG和OG的長(zhǎng),證明△AMG≌△CAF,得:AG=CF=t,AF=MG=2,分別表示EC和BE的長(zhǎng),代入面積公式可求得S與t的關(guān)系式;并求其t的取值范圍;
(III)證明△ABO∽△CAF,根據(jù)勾股定理表示AC和BC的長(zhǎng),計(jì)算其和,根據(jù)二次根式的意義得出當(dāng)t=0時(shí),值最。
試題解析:解:(I)如圖1,過(guò)M作MG⊥OF于G,∴MG∥OB,當(dāng)t=2時(shí),OA=2.∵M是AB的中點(diǎn),∴G是AO的中點(diǎn),∴OG=OA=1,MG是△AOB的中位線(xiàn),∴MG=OB=×4=2,∴M(1,2);
(II)如圖1,同理得:OG=AG=t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=t,AF=MG=2,∴EC=4﹣t,BE=OF=t+2,∴S△BCE=ECBE=(4﹣t)(t+2)=﹣t2+t+4;
S△ABC=ABAC==t2+4,∴S=S△BEC+S△ABC=t+8.
當(dāng)A與O重合,C與F重合,如圖2,此時(shí)t=0,當(dāng)C與E重合時(shí),如圖3,AG=EF,即 t=4,t=8,∴S與t之間的函數(shù)關(guān)系式為:S=t+8(0≤t≤8);
(III)如圖1,易得△ABO∽△CAF,∴===2,∴AF=2,CF=t,由勾股定理得:AC===,BC===,∴BC+AC=( +1),∴當(dāng)t=0時(shí),BC+AC有最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)13+(-18)-(6-11)
(2)÷
(3)-14-×[2-(-3)2]
(4)a-2b-[-4a+(c+3b)]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+n+1)x+m(n≥0)的兩個(gè)實(shí)數(shù)根為α、β,且α≤β.
(1)試用含α、β的代數(shù)式表示m和n;
(2)求證:α≤1≤β;
(3)若點(diǎn)P(α,β)在△ABC的三條邊上運(yùn)動(dòng),且△ABC頂點(diǎn)的坐標(biāo)分別為A(1,2)、B(,1)、C(1,1),問(wèn)是否存在點(diǎn)P,使m+n=?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線(xiàn)與CD的延長(zhǎng)線(xiàn)交于點(diǎn)E,與AD交于點(diǎn)F,且點(diǎn)F恰好為邊AD的中點(diǎn).
(1)求證:△ABF≌△DEF;
(2)若AG⊥BE于G,BC=4,AG=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為了保證每天至少售出260斤,張阿姨決定降價(jià)銷(xiāo)售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷(xiāo)售量是 斤(用含x的代數(shù)式表示);
(2)銷(xiāo)售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
(3)當(dāng)每斤的售價(jià)定為多少元時(shí),每天獲利最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的“中國(guó)詩(shī)詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開(kāi)展“中國(guó)詩(shī)詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)此次比賽有四名同學(xué)活動(dòng)滿(mǎn)分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國(guó)詩(shī)詞大賽”比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球運(yùn)動(dòng)是同學(xué)們非常喜歡的日常體育運(yùn)動(dòng),為了更合理地配置體育運(yùn)動(dòng)器材和場(chǎng)地,某校針對(duì)“你最喜歡的球類(lèi)運(yùn)動(dòng)”進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名被調(diào)查者分別選一項(xiàng)球類(lèi)運(yùn)動(dòng)),并把調(diào)查結(jié)果繪制成如圖的兩個(gè)統(tǒng)計(jì)圖表(不完整).
某校學(xué)生最喜愛(ài)的球類(lèi)運(yùn)動(dòng)統(tǒng)計(jì)表
最喜愛(ài)的球類(lèi)運(yùn)動(dòng) | 人數(shù) |
足球 | 27 |
籃球 | |
乒乓球 | 24 |
羽毛球 | 24 |
排球 |
某校學(xué)生最喜愛(ài)的球類(lèi)運(yùn)動(dòng)統(tǒng)計(jì)圖
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)本次被抽樣調(diào)查的學(xué)生共有多少人?
(2)求扇形統(tǒng)計(jì)圖中最喜愛(ài)籃球部分的圓心角度數(shù);
(3)若該校共有學(xué)生960人,請(qǐng)根據(jù)抽樣結(jié)果估計(jì)學(xué)生中最喜愛(ài)乒乓球的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,四邊形OABC為菱形,A點(diǎn)的坐標(biāo)為,對(duì)角線(xiàn)OB、AC相交于D點(diǎn),雙曲線(xiàn)經(jīng)過(guò)D點(diǎn),交BC的延長(zhǎng)線(xiàn)于E點(diǎn),且,則E點(diǎn)的坐標(biāo)是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“莓好莒南 幸福家園”---2018年莒南縣第三屆草莓旅游文化節(jié)期間,甲、乙兩家草莓采摘園草莓品質(zhì)相同,銷(xiāo)售價(jià)格也相同,均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)60元的門(mén)票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠,優(yōu)惠期間,設(shè)某游客的草莓采摘量為千克,在甲采摘園所需總費(fèi)用為元,在乙采摘園所需總費(fèi)用為元,圖中折線(xiàn)OAB表示與x之間的函數(shù)關(guān)系.
求,與x的函數(shù)表達(dá)式;
若選擇甲采摘園所需總費(fèi)用較少,請(qǐng)求出草莓采摘量x的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com