【題目】某校隨機抽取部分學(xué)生,就“學(xué)習(xí)習(xí)慣”進行調(diào)查,將“對自己做錯的題目進行整理、分析、改正”選項為:很少、有時、常常、總是的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題
該調(diào)查的樣本容量為______,______,______,“常!睂(yīng)扇形的圓心角為______
請你補全條形統(tǒng)計圖;
若該校共有3200名學(xué)生,請你估計其中“總是”對錯題進行整理、分析、改正的學(xué)生有多少名?
【答案】(1)200,12,36,108°;(2)見解析;(3)1152.
【解析】
(1)由統(tǒng)計圖中的信息可知,選擇“有時”的人數(shù)為44人,占被調(diào)查人數(shù)的22%,由此即可求出樣本容量,進而結(jié)合統(tǒng)計圖中的信息即可求得a和b的值及扇形統(tǒng)計圖中“常!边@一選項所對應(yīng)的圓心角的度數(shù);
(2)根據(jù)(1)中所得樣本容量結(jié)合選擇“常!钡恼急徽{(diào)查人數(shù)的30%計算出選擇“常!钡娜藬(shù)即可補全條形統(tǒng)計圖;
(3)由全校有3200人結(jié)合(1)中所得b的值進行計算即可.
(1)由題意可得,該調(diào)查的樣本容量為:44÷22%=200(名),
a=24÷200×100%=12%,b=72÷20×100%=36%,
在扇形統(tǒng)計圖中,“常!睂(yīng)扇形的圓心角為:.
(2)由(1)中所得樣本容量為200,選擇“常常”的占被調(diào)查人數(shù)的30%可得:
選擇“常!钡娜藬(shù)為:名,
由此補全條形統(tǒng)計圖如下圖所示:
(3)由(1)可知,在被調(diào)查的學(xué)生中,選擇“總是”的學(xué)生占總數(shù)的36%,而全校共有3200人,
∴“總是”對錯題進行整理、分析、改正的學(xué)生人數(shù)為:3200×36%=1152(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀求絕對值不等式和的解集過程:
對于絕對值不等式,從圖1所示的數(shù)軸上看:大于而小于的數(shù)絕對值是小于的,所以的解集是;
對于絕對值不等式,從圖2所示的數(shù)軸上看:小于而大于的數(shù)絕對值是大于的,所以的解集…….
解答下面的問題:
解不等式:⑴. ; ⑵. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=kx+4與x軸正半軸交于一點A,與y軸交于點B,已知△OAB的面積為10,
(1)求這條直線的解析式;
(2)若將這條直線沿x軸翻折,求翻折后得到的直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】去年春季,蔬菜種植場在15公頃的大棚地里分別種植了茄子和西紅柿,總費用是萬元其中,種植茄子和西紅柿每公頃的費用和每公頃獲利情況如表:
每公頃費用萬元 | 每公頃獲利萬元 | |
茄子 | ||
西紅柿 |
請解答下列問題:
求出茄子和西紅柿的種植面積各為多少公頃?
種植場在這一季共獲利多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個由4條線段構(gòu)成的“魚”形圖案,其中∠1=50°,∠2=50°,∠3=130°,找出圖中的平行線,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.
(1)求證: = ;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當(dāng)∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成,觀察規(guī)律并完成各題的解答.
(1)表中第8行的最后一個數(shù)是 ,它是自然數(shù) 的平方,第8行共有 個數(shù);
(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是 ,最后一個數(shù)是 ,第n行共有 個數(shù);
(3)求第n行各數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P1(x1,y1),P2(x2,y2),P3(x3,y3)是反比例函數(shù)的圖象上的三點,且x1<0<x2<x3,則y1,y2,y3的大小關(guān)系是________.
【答案】
【解析】試題分析:∵函數(shù)y=中,k=-1<0,
∴此函數(shù)的圖象的兩個分支位于二四象限,且在每一象限內(nèi),y隨x的增大而增大.
∵x1<0<x2<x3,
∴點A(x1,y1)在第二象限,B(x2,y2)、C(x3,y3)在第四象限,
∴y1>0,y2<y3<0,
∴y2<y3<y1.
故答案為:y2<y3<y1.
點睛:本題考查的是反比例函數(shù)圖象的性質(zhì),當(dāng)k>0時,圖象位于一三象限,在每一個象限內(nèi)y隨x的增大而減小,k<0時,圖象位于二四象限,在每一個象限內(nèi),y隨x的增大而增大.
【題型】填空題
【結(jié)束】
14
【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=80°,點P是射線AM上動點(與A不重合),BC、BD分別平分∠ABP和∠PBN,交射線AM于C、D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點P運動時,那么∠APB:∠ADB的度數(shù)比值是否隨之發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當(dāng)點P運動到使∠ACB=∠ABD時,求∠ABC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com