【題目】如圖,邊長為的正方形的頂點、在一個半徑為的圓上,頂點、在圓內(nèi),將正方形沿圓的內(nèi)壁逆時針方向作無滑動的滾動.當點第一次落在圓上時,點運動的路徑長為________.
【答案】
【解析】
設圓心為O,連接AO,BO,AC,AE,易證三角形AOB是等邊三角形,確定∠GFE=∠EAC=30°,再利用弧長公式計算即可.
如圖所示:設圓心為O,連接AO,BO,AC,AE,
∵AB=,AO=BO=,
∴AB=AO=BO,
∴△AOB是等邊三角形,
∴∠AOB=∠OAB=60°
同理:△FAO是等邊三角形,∠FAB=2∠OAB=120°,
∠DAF=120°-90°=30°,即旋轉(zhuǎn)角為30°,
∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,
∵AD=AB=,
∴AC=2,
∴當點C第一次落在圓上時,點C運動的路徑長為=()π;
故答案為:()π
科目:初中數(shù)學 來源: 題型:
【題目】圖中是拋物線形拱橋,點P處有一照明燈,水面OA寬4 m,以O為原點,OA所在直線為x軸建立平面直角坐標系,已知點P的坐標為(3, ).
(1)點P與水面的距離是________m;
(2)求這條拋物線的表達式;
(3)當水面上升1 m后,水面的寬變?yōu)槎嗌伲?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+b的圖象過點A(0,3),點p是該直線上的一個動點,過點P分別作PM垂直x軸于點M,PN垂直y軸于點N,在四邊形PMON上分別截。篜C=MP,MB=OM,OE=ON,ND=NP.
(1)b= ;
(2)求證:四邊形BCDE是平行四邊形;
(3)在直線y=﹣x+b上是否存在這樣的點P,使四邊形BCDE為正方形?若存在,請求出所有符合的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究:
(1)操作發(fā)現(xiàn):如圖1,在中,為銳角,為射線上一動點,連接,以為直角邊且在的上方作等腰直角三角形.若,.當點在線段上時(與點不重合),你能發(fā)現(xiàn)與的數(shù)量關系和位置關系嗎?請直接寫出你發(fā)現(xiàn)的結論.
(2)類比與猜想:當點在線段的延長線上時,其余條件不變,(1)中的結論是否仍然成立?請在圖2中畫出相應圖形并說明理由.
(3)深入探究:如圖3,若,,,點在線段上運動,請寫出與的位置關系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖形經(jīng)過點,且與軸交點的橫坐標分別為,,其中,,下列結論:①;②;③;④.其中正確結論的序號是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF;
(3)CE與BG的大小關系如何?試證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.
(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結果.
(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的邊AB、AC為邊向外作等邊三角形△ABD與△ACE,線段BE交DC于點F,下列結論:①CD=BE;②FA平分∠BAC;③∠BFC=120°,④FA+FB=FD,其中正確有( )個.
A.4個B.3個C.2個D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com