【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結果保留小數(shù)點后一位,參考數(shù)據(jù): ≈1.41, ≈1.73).

【答案】解:過點A作AH⊥CD,垂足為H,

由題意可知四邊形ABDH為矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH= ,
∴CH=AHtan∠CAH,
∴CH=AHtan∠CAH=6tan30°=6× (米),
∵DH=1.5,
∴CD=2 +1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=
∴CE= =4+ ≈5.7(米),
答:拉線CE的長約為5.7米.
【解析】由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若一個兩位正整數(shù)m的個位數(shù)為8,則稱m好數(shù)”.

1)求證:對任意好數(shù)”m,m2-64一定為20的倍數(shù);

2)若m=p2-q2,且p,q為正整數(shù),則稱數(shù)對(p,q)友好數(shù)對,規(guī)定: ,例如68=182-162,稱數(shù)對(18,16)為友好數(shù)對,則,求小于50好數(shù)中,所有友好數(shù)對H(m)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC, 中,DBC的中點,DEBCCEAD,若 ,求四邊形ACEB的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中,比﹣1小的數(shù)是(  )

A.2B.0.5C.0D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】杭紹臺高鐵項目是國內首批八個社會資本投資鐵路示范項目之一,也是中國首個民營控股高速鐵路項目.該項目可用批復總投資預計448.9億元,資本金占總投資的30%,其中民營聯(lián)合體占股51%,其中448.9億元用科學記數(shù)法表示為_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關系圖象如圖所示.觀察圖象,給出下列結論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一次函數(shù)y=2x+4與x軸,y軸分別相交于A,B兩點,一次函數(shù)圖象與坐標軸圍成的△ABO,我們稱它為此一次函數(shù)的坐標三角形.把坐標三角形面積分成相等的二部分的直線叫做坐標三角形的等積線.

(1)求此一次函數(shù)的坐標三角形周長以及過點A的等積線的函數(shù)表達式;

(2)如圖2,我們把第一個坐標三角形△ABO記為第一代坐標三角形.第一代坐標三角形的等積線BA1,AB1記為第一對等積線,它們交于點O1,四邊形A1OB1O1稱為第一個坐標四邊形.求點O1的坐標和坐標四邊形A1OB1O1面積;

(3)如圖3.第一對等積線與坐標軸構成了第二代坐標三角形△BA1O.△AOB1分別過點A,B作一條平分△BA1O,△AOB1面積的第二對等積線BA2,AB2,相交于點O2,如此進行下去.…,請直接寫出On的坐標和第n個坐標四邊形面積(用n表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC沿直線l向右移了3厘米,得FDE,且BC6厘米,∠B40°.

(1)BE;

(2)求∠FDB的度數(shù);

(3)找出圖中相等的線段(不另添加線段);

(4)找出圖中互相平行的線段(不另添加線段)

查看答案和解析>>

同步練習冊答案