【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說(shuō)明理由.
【答案】證明:
(1)∵AB∥CD,即AE∥CD,
又∵CE∥AD,∴四邊形AECD是平行四邊形. 2分
∵AC平分∠BAD,∴∠CAE=∠CAD,
又∵AD∥CE,∴∠ACE=∠CAD,
∴∠ACE=∠CAE,
∴AE=CE,
∴四邊形AECD是菱形;········· 4分
(2)證法一:∵E是AB中點(diǎn),∴AE=BE.
又∵AE=CE,∴BE=CE,∴∠B=∠BCE,
∵∠B+∠BCA+∠BAC=180°,
∴2∠BCE+2∠ACE=180°,∴∠BCE+∠ACE=90°.
即∠ACB=90°,∴△ABC是直角三角形.
證法二:連DE,則DE⊥AC,且平分AC,
設(shè)DE交AC于F,∵E是AB的中點(diǎn),∴EF∥BC.
∴BC⊥AC,∴△ABC是直角三角形.······· 8分
【解析】
試題(1)先根據(jù)平行四邊形的定義證得四邊形AECD是平行四邊形,根據(jù)平行線的性質(zhì)可得∠ACE=∠CAD,再結(jié)合角平分線的性質(zhì)可得AE=CE,從而證得結(jié)論;(2)由AE=CE,AE=BE可得BE=CE,即可得到∠B=∠BCE,由∠B+∠BCA+∠BAC=180可得2∠BCE+2∠ACE=180,即可得到結(jié)果.
(1)∵AB∥CD, CE∥AD,
∴四邊形AECD是平行四邊形.
∵CE∥AD,
∴∠ACE=∠CAD.
∵AC平分∠BAD,
∴∠CAE=∠CAD.
∴∠ACE=∠CAE,
∴AE=CE.
∴四邊形AECD是菱形;
(2)∵AE=CE,AE=BE,
∴BE=CE,
∴∠B=∠BCE,
∵∠B+∠BCA+∠BAC=180,
∴2∠BCE+2∠ACE=180,
∴∠BCE+∠ACE=90,即∠ACB=90.
∴△ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】說(shuō)明理由
如圖,∠1+∠2=230°,b∥c, 則∠1、∠2、∠3、∠4各是多少度?
解:∵ ∠1=∠2 (_________________________)
∠1+∠2=230°
∴∠1 =∠2 =________(填度數(shù))
∵ b∥c
∴∠4 =∠2= ________(填度數(shù))
( )
∠2 +∠3 =180° ( )
∴∠3 =180°-∠2 =_________(填度數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知∠MON=140°,∠AOC與∠BOC互余,OC平分∠MOB,
(1)在圖1中,若∠AOC=40°,則∠BOC= °,∠NOB= °.
(2)在圖1中,設(shè)∠AOC=α,∠NOB=β,請(qǐng)?zhí)骄?/span>α與β之間的數(shù)量關(guān)系( 必須寫出推理的主要過(guò)程,但每一步后面不必寫出理由);
(3)在已知條件不變的前提下,當(dāng)∠AOB繞著點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng)到如圖2的位置,此時(shí)α與β之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)直接寫出此時(shí)α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電話計(jì)費(fèi)問(wèn)題,下表中有兩種移動(dòng)電話計(jì)費(fèi)方式:
溫馨揭示:方式一:月使用費(fèi)固定收(月收費(fèi):38元/月);主叫不超限定時(shí)間不再收費(fèi)(80分鐘以內(nèi),包括80分鐘);主叫超時(shí)部分加收超時(shí)費(fèi)(超過(guò)部分0.15元/);被叫免費(fèi)。
方式二:月使用費(fèi)0元(無(wú)月租費(fèi));主叫限定時(shí)間0分鐘;主叫每分鐘0.35元/;被叫免費(fèi)。
(1)設(shè)一個(gè)月內(nèi)用移動(dòng)電話主叫時(shí)間為,方式一計(jì)費(fèi)元,方式二計(jì)費(fèi)元。寫出和關(guān)于的函數(shù)關(guān)系式。
(2)在平面直角坐標(biāo)系中畫出(1)中的兩個(gè)函數(shù)圖象,記兩函數(shù)圖象交點(diǎn)為點(diǎn),則點(diǎn)的坐標(biāo)為_____________________(直接寫出坐標(biāo),并在圖中標(biāo)出點(diǎn))。
(3)根據(jù)(2)中函數(shù)圖象,請(qǐng)直接寫出如何根據(jù)每月主叫時(shí)間選擇省錢的計(jì)費(fèi)方式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入它所屬的集合內(nèi):
,0,5.2, ,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…
(1)分?jǐn)?shù)集合:{______ …}
(2)非負(fù)整數(shù)集合:{______ …}
(3)有理數(shù)集合:{______ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖∠AOB是直角,在∠AOB外作射線OC,OM平分∠AOC,ON平分∠BOC.
(1)若∠AOC=38°,求∠MON的度數(shù);
(2)若∠AOC=,試說(shuō)明∠MON的大小與無(wú)關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),線段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;
(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;
(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,D是邊BC上一點(diǎn),點(diǎn)E、F分別是線段AB、AD中點(diǎn),聯(lián)結(jié)CE、CF、EF.
(1)求證:△CEF≌△AEF;
(2)聯(lián)結(jié)DE,當(dāng)BD=2CD時(shí),求證:AD=2DE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com