【題目】在同一平面直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=﹣ax2+c(a≠c)的圖象大致為( )
A.B.
C.D.
【答案】B
【解析】
可先根據(jù)一次函數(shù)的圖象判斷a、c的符號(hào),求出一次函數(shù)與x軸的交點(diǎn)位置,再判斷二次函數(shù)圖象,求出二次函數(shù)與x軸的交點(diǎn)位置,進(jìn)而判斷是否相符即可.
A、由一次函數(shù)y=ax+c的圖象可得:a>0,c>0,與x軸的交點(diǎn)坐標(biāo)為(﹣,0),與y軸的交點(diǎn)是(0,c),此時(shí)二次函數(shù)y=﹣ax2+c的圖象應(yīng)該開(kāi)口向下,與x軸的交點(diǎn)坐標(biāo)為(±,0),與y軸的交點(diǎn)是(0,c),因?yàn)?/span>a≠c,所以?xún)珊瘮?shù)圖象與x軸的交點(diǎn)不會(huì)重合,故A錯(cuò)誤;
B、由一次函數(shù)y=ax+c的圖象可得:a>0,c>0,與x軸的交點(diǎn)坐標(biāo)為(﹣,0),與y軸的交點(diǎn)是(0,c),此時(shí)二次函數(shù)y=﹣ax2+c的圖象應(yīng)該開(kāi)口向下,與x軸的交點(diǎn)坐標(biāo)為(±,0),與y軸的交點(diǎn)是(0,c),因?yàn)?/span>a≠c,所以?xún)珊瘮?shù)圖象與x軸的交點(diǎn)不會(huì)重合,故B正確;
C、由一次函數(shù)y=ax+c的圖象可得:c>0,由二次函數(shù)y=﹣ax2+c的圖象可得c<0,故錯(cuò)誤;
D、由一次函數(shù)y=ax+c的圖象可得:a<0,c<0,與x軸的交點(diǎn)坐標(biāo)為(﹣,0),與y軸的交點(diǎn)是(0,c),此時(shí)二次函數(shù)y=﹣ax2+c的圖象應(yīng)該開(kāi)口向上,與x軸的交點(diǎn)坐標(biāo)為(±,0),與y軸的交點(diǎn)是(0,c),因?yàn)?/span>a≠c,所以?xún)珊瘮?shù)圖象與x軸的交點(diǎn)不會(huì)重合,故D錯(cuò)誤;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=8,P為線(xiàn)段AB上一個(gè)動(dòng)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCD和PBFE,點(diǎn)P,C,E在一條直線(xiàn)上,∠DAP=60°,M,N分別是對(duì)角線(xiàn)AC,BE的中點(diǎn),當(dāng)點(diǎn)P在線(xiàn)段AB上移動(dòng)時(shí),點(diǎn)M,N之間的距離最短為( )
A. B. C. 4D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在雙曲線(xiàn)y=(x>0)上,點(diǎn)B在雙曲線(xiàn)y=(x>0)上,且AB∥x軸,BC∥y軸,點(diǎn)C在x軸上,則△ABC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,AC分別是半⊙O的直徑和弦,OD⊥AC于點(diǎn)D,過(guò)點(diǎn)A作半⊙O的切線(xiàn)AP,AP與OD的延長(zhǎng)線(xiàn)交于點(diǎn)P.連接PC并延長(zhǎng)與AB的延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)求證:PC是半⊙O的切線(xiàn);
(2)若∠CAB=30°,AB=10,求線(xiàn)段BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線(xiàn)頂點(diǎn),點(diǎn)E在拋物線(xiàn)上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,則△ABD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?
(3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣k在第二象限內(nèi)的交點(diǎn),AB⊥x軸于點(diǎn)B,且S△ABO=3.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求一次函數(shù)與反比例函數(shù)的兩個(gè)交點(diǎn)A,C的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長(zhǎng)交AB于點(diǎn)E,連接EN并延長(zhǎng)交CD于點(diǎn)F,以下結(jié)論:
①E為AB的中點(diǎn);
②FC=4DF;
③S△ECF=;
④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.
其中一定正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)請(qǐng)按下列要求畫(huà)圖:
①將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到△A1B1C1,畫(huà)出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),畫(huà)出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱(chēng),請(qǐng)直接寫(xiě)出對(duì)稱(chēng)中心M點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com