【題目】如圖,在四邊形中,已知.

1)求的度數(shù);

2)求四邊形的面積.

【答案】1;(2

【解析】

1)由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可證△ACD是直角三角形,于是有∠CAD=90°,從而易求∠BAD
2)連接AC,則可以計(jì)算△ABC的面積,根據(jù)AB、BC可以計(jì)算AC的長,根據(jù)AC,AD,CD可以判定△ACD為直角三角形,根據(jù)AD,CD可以計(jì)算△ACD的面積,四邊形ABCD的面積為△ABC和△ADC面積之和.

1)連結(jié)AC,


∵∠B=90°,AB=BC=2,
AC2,∠BAC=45°,
AD=1CD=3,
AD2+AC212+(2)29,CD2=9,
AD2+AC2=CD2,
∴△ADC是直角三角形,
∴∠DAC=90°,
∴∠DAB=DAC+BAC=135°

2)在 RtABC中,SABCBCAB×2×22,
RtADC中,SADCADAC×1×2
S四邊形ABCDSABC+SADC2+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,AEBC , AFCD , 且E , F分別為BC , CD的中點(diǎn),求∠EAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

(1)(1)23×(π3)0() 3;

(2)aa2a3+(2a3)2a8÷a2;

(3)(x+4)2(x+2)(x2);

(4)(a+2b3c)(a2b+3c)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2)

(1)1中陰影部分面積為______,圖2中陰影部分面積為_____,對照兩個圖形的面積可以驗(yàn)證________公式(填公式名稱)請寫出這個乘法公式________

(2)應(yīng)用(1)中的公式,完成下列各題:

①已知x24y215,x+2y3,求x2y的值;

②計(jì)算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)FFGCD,交AE于點(diǎn)G,連接DG

(1)求證:四邊形DEFG為菱形;

(2)若CD=8,CF=4,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D,求證:∠B=C

請?jiān)谙旅娴淖C明過程的括號內(nèi),填寫依據(jù).

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD

∵∠1+2=180°(已知)

∴∠2+CGD=180°(等量代換)

AE//FD

∴∠AEC=D

∵∠A=D(已知)

∴∠AEC=A

AB//CD

∴∠B=C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對任意一個正整數(shù)m,如果m=k(k+1),其中k是正整數(shù),則稱m為“矩?cái)?shù)”,k 為m的最佳拆分點(diǎn).例如,56=7×(7+1),則56是一個“矩?cái)?shù)”,7為56的最佳拆分點(diǎn).
(1)求證:若“矩?cái)?shù)”m是3的倍數(shù),則m一定是6的倍數(shù);
(2)把“矩?cái)?shù)”p與“矩?cái)?shù)”q的差記為 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,則 D(20,6)=20﹣6=14.若“矩?cái)?shù)”p的最佳拆分點(diǎn)為t,“矩?cái)?shù)”q的最佳拆分點(diǎn)為s,當(dāng) D(p,q)=30時,求 的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC面積為1,第一次操作:分別延長ABBC,CA至點(diǎn)A1,B1,C1,使A1BAB,B1CBCC1ACA,順次連接A1B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2B2,C2,使A2B1A1B1,B2C1B1C1,C2A1C1A1,順次連接A2,B2,C2,得到△A2B2C2,按此規(guī)律,要使得到的三角形的面積超過2019,最少經(jīng)過(  )次操作.

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空.如圖,已知∠1=2,∠B=C,可推得ABCD,理由如下:

解:因?yàn)椤?/span>1=2(已知),且∠1=4

所以∠2=4(等量代換)

所以CEBF

所以∠ =3

又因?yàn)椤?/span>B=C(已知),所以∠3=B

所以ABCD ( )

查看答案和解析>>

同步練習(xí)冊答案