試題分析:(1)根據(jù)題意觀察圖形連接AD并延長至點F,由外角定理可知,一個三角形的外角等于與它不相鄰的兩個內(nèi)角的和,則容易得到∠BDC=∠BDF+∠CDF;
(2)①由(1)的結(jié)論可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值.
②結(jié)合圖形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的結(jié)論可知∠DCE=
(∠ADB+∠AEB)+∠A,易得答案.
③由(2)的方法,進而可得答案.
(1)連接AD并延長至點F,
由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;
相加可得∠BDC=∠A+∠B+∠C;
(2)①由(1)的結(jié)論易得:∠ABX+∠ACX+∠A=∠BXC,
又因為∠A=50°,∠BXC=90°,
所以∠ABX+∠ACX=90°-50°=40°;
②由(1)的結(jié)論易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;
而∠DCE=
(∠ADB+∠AEB)+∠A,
代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;
③∠BG
1C=
(∠ABD+∠ACD)+∠A,
∵∠BG
1C=77°,
∴設(shè)∠A為x°,
∵∠ABD+∠ACD=140°-x°
∴
(140-x)+x=77,
14-
x+x=77,
x=70
∴∠A為70°.