【題目】已知二次函數(shù)y=x2-2mx+m2-1.
(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0)時,求二次函數(shù)的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
【答案】(1)二次函數(shù)的解析式為:y=x2-2x或y=x2+2x;(2)C(0,3)、D(2,-1);(3)P(,0).
【解析】
試題分析:(1)根據(jù)二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),直接代入求出m的值即可;
(2)根據(jù)m=2,代入求出二次函數(shù)解析式,進而利用配方法求出頂點坐標以及圖象與y軸交點即可;
(3)根據(jù)當P、C、D共線時PC+PD最短,利用平行線分線段成比例定理得出PO的長即可得出答案.
試題解析:(1)∵二次函數(shù)的圖象經(jīng)過坐標原點O(0,0),
∴代入二次函數(shù)y=x2-2mx+m2-1,得出:m2-1=0,
解得:m=±1,
∴二次函數(shù)的解析式為:y=x2-2x或y=x2+2x;
(2)∵m=2,
∴二次函數(shù)y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,
∴拋物線的頂點為:D(2,-1),
當x=0時,y=3,
∴C點坐標為:(0,3),
∴C(0,3)、D(2,-1);
(3)當P、C、D共線時PC+PD最短,
過點D作DE⊥y軸于點E,
∵PO∥DE,
∴,
∴,
解得:PO=,
∴PC+PD最短時,P點的坐標為:P(,0).
科目:初中數(shù)學 來源: 題型:
【題目】學習完第五章《相交線與平行線》后,王老師布置了一道兒何證明題如下:“如圖,已知直線AB,CD被直線EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度數(shù).”善于動腦的小軍快速思考,找到了解題方案,并書寫出了如下不完整的解題過程.請你將該題解題過程補充完整:
解:∵∠1=∠2=80°(已知)
∴AB∥CD
∴∠BGF+∠3=180°
∵∠2+∠EFD=180°(鄰補角的定義),
∴∠EFD= °(等式性質(zhì))
∵FG平分∠EFD(已知),
∴∠EFD=2∠3(角平分線的定義)
∴∠3= °(等式性質(zhì))
∴∠BGF= °(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于C、D兩點,點P在直線CD上.
(1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關(guān)系,并說明理由;
(2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關(guān)系會發(fā)生變化嗎?
答: (填發(fā)生或不發(fā)生)
(3)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了更好治理污水質(zhì),改善環(huán)境,決定購買10臺污水處理設(shè)備,現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如表:
A型 | B型 | |
價格(萬元/臺) | a | b |
處理污水量(噸/月) | 200 | 160 |
經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多3萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少1萬元.
(1)求a,b的值;
(2)經(jīng)預算:市治污公司購買污水處理設(shè)備的資金不超過78萬元,你認為該公司有哪幾種購買方案;
(3)在(2)間的條件下,若每月要求處理的污水量不低于1620噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是( )
A. ①② B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點A(-1,0),頂點坐標為(1,n),與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①當時, ;②;③;④中,正確的是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我縣實施新課程改革后,學生的自主學習、合作交流能力有很大提高,胡老師為了了解班級學生自主學習、合作交流的具體情況,對某班部分學生進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,胡老師一共調(diào)查了 名同學,其中女生共有 ___名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,胡老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)缦卤?/span>單位:環(huán):
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 10 | 9 | 8 | 8 | 10 | 9 |
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
根據(jù)表格中的數(shù)據(jù),可計算出甲、乙兩人的平均成績都是9環(huán).
(1)分別計算甲、乙六次測試成績的方差;
(2)根據(jù)數(shù)據(jù)分析的知識,你認為選______名隊員參賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,邊長為a的正方形中有一個邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個正方形.
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請直接用含a,b的代數(shù)式表示S1,S2;
(2)請寫出上述過程所揭示的乘法公式;
(3)試利用這個公式計算:(2+1)(22+1)(24+1)(28+1)+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com