【題目】如圖,已知二次函數(shù)y=a(x﹣h)2+ 的圖象經(jīng)過原點O(0,0),A(2,0).
(1)寫出該函數(shù)圖象的對稱軸;
(2)若將線段OA繞點O逆時針旋轉(zhuǎn)60°到OA′,試判斷點A′是否為該函數(shù)圖象的頂點?
【答案】
(1)解:∵二次函數(shù)y=a(x﹣h)2+ 的圖象經(jīng)過原點O(0,0),A(2,0).
解得:h=1,a=﹣ ,
∴拋物線的對稱軸為直線x=1
(2)解:點A′是該函數(shù)圖象的頂點.理由如下:
如圖,作A′B⊥x軸于點B,
∵線段OA繞點O逆時針旋轉(zhuǎn)60°到OA′,
∴OA′=OA=2,∠A′OA=60°,
在Rt△A′OB中,∠OA′B=30°,
∴OB= OA′=1,
∴A′B= OB= ,
∴A′點的坐標(biāo)為(1, ),
∴點A′為拋物線y=﹣ (x﹣1)2+ 的頂點.
【解析】(1)由于拋物線過點O(0,0),A(2,0),根據(jù)拋物線的對稱性得到拋物線的對稱軸為直線x=1;(2)作A′B⊥x軸于B,先根據(jù)旋轉(zhuǎn)的性質(zhì)得OA′=OA=2,∠A′OA=60°,再根據(jù)含30度的直角三角形三邊的關(guān)系得OB= OA′=1,A′B= OB= ,則A′點的坐標(biāo)為(1, ),根據(jù)拋物線的頂點式可判斷點A′為拋物線y=﹣ (x﹣1)2+ 的頂點.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、M在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸為x= ,且經(jīng)過點(2,0),有下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是拋物線上的兩點,則y1=y2 . 上述說法正確的是( )
A.①②④
B.③④
C.①③④
D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點在軸上,且.
(1)求點的坐標(biāo),并畫出;
(2)求的面積;
(3)在軸上是否存在點,使以三點為頂點的三角形的面積為10?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC=2cm,線段BC上一動點P從C點開始運(yùn)動,到B點停止,以AP為邊在AC的右側(cè)作等邊△APQ,則Q點運(yùn)動的路徑為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y= x2﹣2x﹣1
(1)用配方法把拋物線化成頂點式,指出開口方向頂點坐標(biāo)和對稱軸
(2)用描點法畫出圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com