【題目】如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點(diǎn)B,與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)為A(1,m),過(guò)點(diǎn)B作AB的垂線(xiàn)BD,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)D(n,﹣2).
(1)k1和k2的值分別是多少?
(2)直線(xiàn)AB,BD分別交x軸于點(diǎn)C,E,若F是y軸上一點(diǎn),且滿(mǎn)足△BDF∽△ACE,求點(diǎn)F的坐標(biāo).
【答案】(1)4,-16;(2)點(diǎn)F的坐標(biāo)為(0,﹣8).
【解析】(1)將A坐標(biāo)代入一次函數(shù)解析式中求出m的值,確定出A的坐標(biāo),將A坐標(biāo)代入反比例函數(shù)y=中即可求出k1的值;過(guò)A作AM垂直于y軸,過(guò)D作DN垂直于y軸,可得出一對(duì)直角相等,再由AC垂直于BD,利用同角的余角相等得到一對(duì)角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到△ABM與△BDN相似,由相似得比例,求出DN的長(zhǎng),確定出D的坐標(biāo),代入反比例函數(shù)y=中即可求出k2的值;
(2)在y軸上存在一個(gè)點(diǎn)F,使得△BDF∽△ACE,此時(shí)F(0,-8),理由為:由y=2x+2求出C坐標(biāo),由OB=ON=2,DN=8,可得出OE為△BDN的中位線(xiàn),求出OE的長(zhǎng),進(jìn)而利用勾股定理求出AE,CE,AC,BD的長(zhǎng),以及∠EBO=∠ACE=∠EAC,若△BDF∽△ACE,得到比例式,求出BF的長(zhǎng),即可確定出此時(shí)F的坐標(biāo)。
(1)∵點(diǎn)A(1,m)在一次函數(shù)y=2x+2的圖象上,∴m=2+2=4,
∵點(diǎn)A(1,4)在反比例函數(shù)y=的圖象上,∴k1=1×4=4;
∵BD⊥AB,∴∠BCE+∠BEC=90°,∵∠OCB+∠OBC=90°,∴∠BEC=∠OBC,
∴△BEC∽△OBC,∴.
∵已知一次函數(shù)y=2x+2的圖象與y軸交于點(diǎn)B,與x軸交于點(diǎn)C,
∴B(0,2),C(﹣1,0),∴BC==,OB=2,OC=1,∴CE==5,
∴E(4,0).設(shè)直線(xiàn)BD的解析式為y=kx+b,則有,解得:,
∴直線(xiàn)BD的解析式為y=﹣x+2.∵點(diǎn)D(n,﹣2)在直線(xiàn)BD上,
∴﹣2=﹣n+2,解得:n=8,∵點(diǎn)D(8,﹣2)在反比例函數(shù)y=(x>0)的圖象上,
∴k2=8×(﹣2)=﹣16.
(2)∵A(1,4),C(﹣1,0),E(4,0),∴CE=4﹣(﹣1)=5,AE==5,
AC==2,∴∠EAC=∠ECA.
∵∠EBO+∠CBO=90°,∠CBO+∠BCO=90°,∴∠EBO=∠BCO=∠EAC=∠DBF,
∴點(diǎn)F在點(diǎn)B的下方.設(shè)點(diǎn)F(0,t),B(0,2),D(8,﹣2),
∴BF=2﹣t,BD==4.∵△BDF∽△ACE,∴,
∴BF=2﹣t==10,解得:t=﹣8.
∴當(dāng)F是y軸上一點(diǎn),且滿(mǎn)足△BDF∽△ACE時(shí),點(diǎn)F的坐標(biāo)為(0,﹣8).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GF交AC于F,交AC的平行線(xiàn)BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩站相距240千米,從甲站開(kāi)出一列慢車(chē),速度為每小時(shí)80千米,從乙站開(kāi)出一列快車(chē),速度為每小時(shí)120千米.
(1)若兩車(chē)同時(shí)開(kāi)出,背向而行,則經(jīng)過(guò)多長(zhǎng)時(shí)間兩車(chē)相距540千米?
(2)若兩車(chē)同時(shí)開(kāi)出,同向而行(快車(chē)在后),則經(jīng)過(guò)多長(zhǎng)時(shí)間快車(chē)可追上慢車(chē)?
(3)若兩車(chē)同時(shí)開(kāi)出,同向而行(慢車(chē)在后),則經(jīng)過(guò)多長(zhǎng)時(shí)間兩車(chē)相距300千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹(shù),在平臺(tái)頂C點(diǎn)測(cè)得樹(shù)頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹(shù)的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹(shù)頂A點(diǎn)的仰角β=60°,求樹(shù)高AB(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)y=2x﹣5與x軸和y軸分別交于點(diǎn)A和點(diǎn)B,拋物線(xiàn)y=﹣x2+bx+c的頂點(diǎn)M在直線(xiàn)AB上,且拋物線(xiàn)與直線(xiàn)AB的另一個(gè)交點(diǎn)為N.
(1)如圖,當(dāng)點(diǎn)M與點(diǎn)A重合時(shí),求拋物線(xiàn)的解析式;
(2)在(1)的條件下,求點(diǎn)N的坐標(biāo)和線(xiàn)段MN的長(zhǎng);
(3)拋物線(xiàn)y=﹣x2+bx+c在直線(xiàn)AB上平移,是否存在點(diǎn)M,使得△OMN與△AOB相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交AB、AC于點(diǎn)M和N,再分別以M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)AP并延長(zhǎng)交BC于點(diǎn)D,則下列說(shuō)法中正確的個(gè)數(shù)是
①AD是∠BAC的平分線(xiàn);②∠ADC=60°;③點(diǎn)D在AB的中垂線(xiàn)上;④S△DAC:S△ABC=1:3.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下一組數(shù):,請(qǐng)用你發(fā)現(xiàn)的規(guī)律,猜想第2018個(gè)數(shù)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛貨車(chē)和一輛小轎車(chē)同時(shí)從甲地出發(fā),貨車(chē)勻速行駛至乙地,小轎車(chē)中途停車(chē)休整后提速行駛至乙地,貨車(chē)行駛的路程y1(km),小轎車(chē)行駛的路程y2(km)與時(shí)間x(h)的對(duì)應(yīng)關(guān)系如圖所示,下列結(jié)論錯(cuò)誤的是( )
A. 甲、乙兩地相距420km
B. y1=60x,y2=
C. 貨車(chē)出發(fā)4.5h與小轎車(chē)首次相遇
D. 兩車(chē)首次相遇時(shí)距乙地150km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,AB=10,BC=14,E,F(xiàn)分別為邊BC,AD上的點(diǎn),若四邊形AECF為正方形,則AE的長(zhǎng)為( )
A.7
B.4或10
C.5或9
D.6或8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com