【題目】如圖,在矩形ABCD中,AB=4,點(diǎn)E,F分別在BC,CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)B′處,又將△CEF沿EF折疊,使點(diǎn)C落在直線EB′與AD的交點(diǎn)C′處,DF=_______.
【答案】
【解析】
連接CC',可以得到CC'是∠EC'D的平分線,所以CB'=CD,又AB'=AB,所以B'是對角線中點(diǎn),AC=2AB,所以∠ACB=30°,即可得出答案.
連接CC'.
∵將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)B'處,
又將△CEF沿EF折疊,使點(diǎn)C落在EB'與AD的交點(diǎn)C'處,
∴EC=EC',
∴∠1=∠ECC'.
∵AD∥BC,
∴∠DC'C=∠ECC',
∴∠1=∠DC'C.
在△CC'B'與△CC'D中,
∵,
∴△CC'B'≌△CC'D,
∴CB'=CD,∠ACC'=∠DCC'.
又∵AB'=AB,
∴AB'=CB',
∴B'是對角線AC中點(diǎn),
即AC=2AB=8,
∴∠ACB=30°,
∴∠BAC=60°,∠ACC'=∠DCC'=30°,
∴∠DC'C=∠1=60°,
∴∠DC'F=∠FC'C=30°,
∴C'F=CF=2DF.
∵DF+CF=CD=AB=4,
∴DF.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點(diǎn),過點(diǎn)作軸,垂足為點(diǎn),且。
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)根據(jù)所給條件,請直接寫出不等式的解集;
(3)若是反比例函數(shù)圖象上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個8cm×16cm智屏手機(jī)抽象成一個矩形ABCD,其中AB=8cm,AD=16cm,現(xiàn)將正在豎屏看視頻的這個手機(jī)圍繞它的中心R順時針旋轉(zhuǎn)90°后改為橫屏看視頻,其中,M是CD的中點(diǎn),則圖中等于45°的角有_____個.(按圖中所標(biāo)字母寫出符合條件的角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣x+c與x軸相交于點(diǎn)A(﹣2,0)、B(4,0),與y軸相交于點(diǎn)C,連接AC,BC,以線段BC為直徑作⊙M,過點(diǎn)C作直線CE∥AB,與拋物線和⊙M分別交于點(diǎn)D,E,點(diǎn)P在BC下方的拋物線上運(yùn)動.
(1)求該拋物線的解析式;
(2)當(dāng)△PDE是以DE為底邊的等腰三角形時,求點(diǎn)P的坐標(biāo);
(3)當(dāng)四邊形ACPB的面積最大時,求點(diǎn)P的坐標(biāo)并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是邊AD上一點(diǎn),延長CE到點(diǎn)F,使∠FBC=∠DCE,且FB與AD相交于點(diǎn)G.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在邊AD上作出一點(diǎn)P,使△BPC∽△CDP,并加以證明.(作圖要求:保留痕跡,不寫作法.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一種簡易臺燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)
(1)求DE與水平桌面(AB所在直線)所成的角;
(2)求臺燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數(shù)是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
據(jù)此,小明猜想:對于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當(dāng)α=30°時,驗(yàn)證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角的頂點(diǎn)在正方形的對角線上,所在的直線交于點(diǎn),交于點(diǎn),連接,. 下列結(jié)論中,正確的有_________ (填序號).
①;②是的一個三等分點(diǎn);③;④;⑤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com