【題目】已知y+2與x-1成正比例,且x=3時,y=4.
(1)求y與x之間的函數(shù)關系式.
(2)求當y=1時x的值.

【答案】
(1)解:設y+2=k(x-1),(k0)
把x=3時,y=4代入得:4+2=k(3-1),
解得:k=3,
∴y與x之間的函數(shù)關系式是:y+2=3(x-1),
即:y=3x-5.
答:y與x之間的函數(shù)關系式是:y=3x-5.

(2)解:當y=1時,3x-5=1,
解得:x=2.
答:當y=1時,x=2.

【解析】(1)已知已知y+2與x-1成正比例,即可以設y+2=k(x-1),把x=3時,y=4代入即可求得k的值,進而求出函數(shù)解析式;(2)在第(1)問基礎上,把y=1代入解析式即可求得x的值.
【考點精析】解答此題的關鍵在于理解確定一次函數(shù)的表達式的相關知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CD⊙O上,∠A=2∠BCD,點EAB的延長線上,∠AED=∠ABC

1)求證:DE⊙O相切;

2)若BF=2,DF=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD,點E是邊AB上一點,點O是線段AE上的一個動點(不與AE重合),以O為圓心,OB為半徑的圓與邊AD相交于點M,過點M⊙O的切線交DC于點N,連結OMON、BM、BN

求證:(1△AOM∽△DMN; (2)求∠MBN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習完一次函數(shù)后,小榮遇到過這樣的一個新穎的函數(shù):y=|x﹣1|,小榮根據(jù)學校函數(shù)的經驗,對函數(shù)y=|x﹣1|的圖象與性質進行了探究.下面是小榮的探究過程,請補充完成:

(1)列表:下表是y與x的幾組對應值,請補充完整.

x

﹣3

﹣2

﹣1

0

1

2

3

y

4

2

1


(2)描點連線:在平面直角坐標系xOy中,請描出以上表中各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)進一步探究發(fā)現(xiàn),該函數(shù)圖象的最低點的坐標是(1,0),結合函數(shù)的圖象,寫出該函數(shù)的其他性質(一條即可):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個三角形的三邊為2、5、x,另一個三角形的三邊為y、2、4,若這兩個三角形全等,則x+y=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若直角三角形的三邊分別為3,4,x,則x2=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一粒芝麻約有0.000002千克,0.000002用科學記數(shù)學法表示為( )千克.
A.2×10﹣4
B.0.2×10﹣5
C.2×10﹣7
D.2×10﹣6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點P(3,5)到x軸的距離有個單位長度,到y(tǒng)軸的距離有個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師出示了問題1:如圖1,四邊形ABCD是正方形,BC=1,對角線交點記作O,點E是邊BC延長線上一點.連接OECD邊于F,設CE=x,CF=y,求y關于x的函數(shù)解析式及其定義域.

1)經過思考,小明認為可以通過添加輔助線﹣﹣過點OOMBC,垂足為M求解.你認為這個想法可行嗎?請寫出問題1的答案及相應的推導過程;

2)如果將問題1中的條件四邊形ABCD是正方形,BC=1”改為四邊形ABCD是平行四邊形,BC=3,CD=2其余條件不變(如圖2),請直接寫出條件改變后的函數(shù)解析式;

3)如果將問題1中的條件四邊形ABCD是正方形,BC=1”進一步改為:四邊形ABCD是梯形,ADBC,BC=aCD=b,AD=c(其中ab,c為常量)其余條件不變(如圖3),請你寫出條件再次改變后y關于x的函數(shù)解析式以及相應的推導過程.

查看答案和解析>>

同步練習冊答案