【題目】如圖所示,,,B,E,C在一條直線(xiàn)上下列結(jié)論:的平分線(xiàn);;線(xiàn)段DE的中線(xiàn);其中正確的有 ()個(gè).

A.2B.3C.4D.5

【答案】A

【解析】

根據(jù)全等三角形的對(duì)應(yīng)角相等得出∠ABD=EBD,即可判斷①;先由全等三角形的對(duì)應(yīng)邊相等得出BD=CD,BE=CE,再根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)得出DEBC,則∠BED=90°,再根據(jù)全等三角形的對(duì)應(yīng)角相等得出∠A=BED=90°,即可判斷②;根據(jù)全等三角形的對(duì)應(yīng)角相等得出∠ABD=EBD,∠EBD=C,從而可判斷∠C,即可判斷③;根據(jù)全等三角形的對(duì)應(yīng)邊相等得出BE=CE,再根據(jù)三角形中線(xiàn)的定義即可判斷④;根據(jù)全等三角形的對(duì)應(yīng)邊相等得出BD=CD,但A、D、C可能不在同一直線(xiàn)上,所以AD+CD可能不等于AC

解:①∵△ADB≌△EDB,
∴∠ABD=EBD,
BD是∠ABE的平分線(xiàn),故①正確;
②∵△BDE≌△CDE,
BD=CD,BE=CE,
DEBC,
∴∠BED=90°,
∵△ADB≌△EDB
∴∠A=BED=90°,
ABAD
A、D、C可能不在同一直線(xiàn)上
AB可能不垂直于AC,故②不正確;
③∵△ADB≌△EDB,BDE≌△CDE,
∴∠ABD=EBD,∠EBD=C
∵∠A=90°
A、D、C不在同一直線(xiàn)上,則∠ABD+EBD+C≠90°,
∴∠C≠30°,故③不正確;
④∵△BDE≌△CDE,
BE=CE,
∴線(xiàn)段DEBDC的中線(xiàn),故④正確;
⑤∵△BDE≌△CDE
BD=CD
A、D、C不在同一直線(xiàn)上,則AD+CDAC,
AD+BDAC,故⑤不正確.
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有四張質(zhì)地均勻,大小完全相同的卡片,在其正面分別標(biāo)有數(shù)字﹣1,﹣2,2,3,把卡片背面朝上洗勻,從中隨機(jī)抽出一張后,不放回,再?gòu)闹须S機(jī)抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字之和為正數(shù)的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形的對(duì)稱(chēng)軸上找點(diǎn),使得均為等腰三角形,則滿(mǎn)足條件的點(diǎn)_________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點(diǎn)E.

(1)在AD上求作點(diǎn)F,使點(diǎn)F到CD和BC的距離相等;

(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

(2)判斷四邊形AECF是什么特殊四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,CDAB于點(diǎn)G,E是CD上一點(diǎn),且BE=DE,延長(zhǎng)EB至點(diǎn)P,連結(jié)CP,使PC=PE,延長(zhǎng)BE與O交于點(diǎn)F,連結(jié)BD,F(xiàn)D.

(1)求證:CD=BF;

(2)求證:PC是O的切線(xiàn);

(3)若tanF=,AG﹣BG=,求ED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°AC平分∠BAD,CEAB,CFAD.試說(shuō)明:

1CBE≌△CDF

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過(guò)程中,點(diǎn)D到點(diǎn)O的最大距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線(xiàn)段AD由線(xiàn)段AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線(xiàn)EF過(guò)點(diǎn)D.

(1)求∠BDF的大;

(2)求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12 米,BC=24 米,動(dòng)點(diǎn)P從點(diǎn)A始沿邊AB向B以2 米/秒的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向C以4 米/秒的速度移動(dòng)(不與點(diǎn)C重合).如果P、Q分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為x 秒,四邊形APQC的面積為y 米2.

(1)求y與x之間的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

(2)四邊形APQC的面積能否等于172米2.若能,求出運(yùn)動(dòng)的時(shí)間;若不能,請(qǐng)說(shuō)明理由.


查看答案和解析>>

同步練習(xí)冊(cè)答案