【題目】關(guān)于x的一元二次方程ax2+4x+20有兩個相等的實數(shù)根,則a的值是( 。

A.2B.0C.1D.2

【答案】D

【解析】

方程ax2+4x+20有兩個相等的實數(shù)根,利用一元二次方程根的判別式b24ac0即可求解.

依題意,方程ax2+4x+20有兩個相等的實數(shù)根

∴△=b24ac168a0,得a2

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綜合與實踐”學(xué)習(xí)活動準備制作一組三角形,記這些三角形的三邊分別為a,b,c,并且這些三角形三邊的長度為大于1且小于5的整數(shù)個單位長度.

(1)用記號(a,b,c)(a≤b≤c)表示一個滿足條件的三角形,如(2,3,3)表示邊長分別為2,3,3個單位長度的一個三角形.請列舉出所有滿足條件的三角形.

(2)用直尺和圓規(guī)作出三邊滿足a<b<c的三角形(用給定的單位長度,不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出六個多項式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+ n2 . 其中,能夠分解因式的是(填上序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,M為AB的中點,N為AD上的一點,且AN= AD,試猜測△CMN是什么三角形,請證明你的結(jié)論.(提示:正方形的四條邊都相等,四個角都是直角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣2,0)、B(4,0)、C(0,﹣8).

(1)求拋物線的解析式及其頂點D的坐標;

(2)直線CD交x軸于點E,過拋物線上在對稱軸的右邊的點P,作y軸的平行線交x軸于點F,交直線CD于M,使PM=EF,請求出點P的坐標;

(3)將拋物線沿對稱軸平移,要使拋物線與(2)中的線段EM總有交點,那么拋物線向上最多平移多少個單位長度,向下最多平移多少個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點F為CD上一點,BF與AC交于點E,∠CBF=20°.
(1)∠ACB的大小=(度);
(2)求證:△ABE≌△ADE;
(3)∠AED的大小=(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果用a=b表示一個等式,c表示一個整式,d表示一個數(shù),那么等式的第一條性質(zhì)就可以表示為a±c=b±c,以下借助符號正確的表示出等式的第二條性質(zhì)的是( 。

A. ac=bd,a÷c=b÷d

B. ad=b÷d,a÷d=bd

C. ad=bda÷d=b÷d

D. ad=bd,a÷d=b÷dd≠0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,點A2,3)與點B關(guān)于x軸對稱,則點B的坐標為

A.(2-3)B.(-2,-3)C.(-23) D. (-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一工程,在工程招標時,接到甲,乙兩個工程隊的投標書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲,乙兩隊的投標書測算,有如下方案: (i)甲隊單獨完成這項工程剛好如期完成;
(ii)乙隊單獨完成這項工程要比規(guī)定日期多用6天;
(iii)若甲,乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成.
試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案