【題目】對x,y定義一種新運算F,規(guī)定:F(x,y)=ax+by(其中a,b均為非零常數(shù)).例如:F(3,4)=3a+4b.
(1)已知F(1,﹣1)=﹣1,F(2,0)=4.
①求a,b的值;
②已知關(guān)于p的不等式組,求p的取值范圍;
(2)若運算F滿足,請你直接寫出F(m,m)的取值范圍(用含m的代數(shù)式表示,這里m為常數(shù)且m>0).
【答案】(1)①a=2,b=3;②1<p ≤2;(2)F(m,m)的取值范圍是﹣m<F(m,m)≤3m.
【解析】
(1)①根據(jù)定義的新運算F,將F(1,-1)=-1,F(2,0)=4代入F(x,y)=ax+by,得到關(guān)于a、b的二元一次方程組,求解即可;
②根據(jù)題中新定義化簡已知不等式組,再求出不等式組的解集即可;
(2)由已知條件得出-1<a+b≤3,由F(m,m)=am+bm=m(a+b),即可得出-m<m(a+b)≤3m,就可以求得F(m,m)的取值范圍.
解:(1)①根據(jù)題意得:F(1,﹣1)=a﹣b=﹣1,
F(2,0)=2a=4,
解得:a=2,b=3;
②根據(jù)F(x,y)=ax+by,
F(3﹣2p,2)=2(3﹣2p)+6=12﹣4p,
F(1,2﹣3p)=2+3(2﹣3p)=8﹣9p,
∴,
解不等式①得:p≤2,
解不等式②得:p>1,
故p的取值范圍為1<p ≤2;
(2)由題意得,
①+②得﹣3<3(a+b)≤9,
則﹣1<a+b≤3,
F(m,m)=am+bm=m(a+b),
所以﹣m<m(a+b)≤3m,
故F(m,m)的取值范圍是﹣m<F(m,m)≤3m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD⊥BC,垂足為點D,EF⊥BC,垂足為點F,∠1+∠2=180°.請?zhí)顚憽?/span>CGD=∠CAB的理由.
解:因為AD⊥BC,EF⊥BC(______。
所以∠ADC=90°,∠EFD=90°(______。
得∠ADC=∠EFD(等量代換),
所以AD∥EF(______ )
得∠2+∠3=180°(______。
由∠1+∠2=180°(______。
得∠1=∠3(______。
所以DG∥AB(______。
所以∠CGD=∠CAB(______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE//AC,且DE:AC=1:2,連接CE、OE,連接AE交OD于點F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一大重要研究成果.如圖所示的三角形數(shù)表,稱“楊輝三角”.具體法則:兩側(cè)的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律:
(1)根據(jù)上面的規(guī)律,寫出(a+b)5的展開式;
(2)利用上面的規(guī)律計算:(﹣3)4+4×(﹣3)3×2+6×(﹣3)2×22+4×(﹣3)×23+24.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,若每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,求:
(1)每千克應漲價多少元?
(2)該水果月銷售(按每月30天)是多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,若每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,求:
(1)每千克應漲價多少元?
(2)該水果月銷售(按每月30天)是多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按照順時針方向旋轉(zhuǎn)m度后得到△DEC,點D剛好落在AB邊上.
(1)求m的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國”.我市中小學每年都要舉辦一屆科技運動會.下圖為我市某校2009年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:
(1)該校參加車模、建模比賽的人數(shù)分別是 人和 人;
(2)該校參加航模比賽的總?cè)藬?shù)是 人,空模所在扇形的圓心角的度數(shù)是 °,并把條形統(tǒng)計圖補充完整;(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑)
(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年我市中小學參加航模比賽人數(shù)共有2485人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com