【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC∠ACB,OD⊥BCDOD=2,△ABC的面積是________________.

【答案】21

【解析】

OOE⊥ABE,OF⊥ACF,連接OA,根據(jù)角平分線性質(zhì)求出OE=OD=OF=2,根據(jù)△ABC的面積等于△ACO的面積、△BCO的面積、△ABO的面積的和,即可作答

OOE⊥ABE,OF⊥ACF,連接OA,

∵OB,OC分別平分∠ABC和∠ACB,OD⊥BC,
∴OE=OD,OD=OF,
OE=OF=OD=2,
∴△ABC的面積是:SAOB+SAOC+SOBC,
=×AB×OE+×AC×OF+×BC×OD,
=×2×(AB+AC+BC),
=×2×16=16,
故答案為:16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=Rt,AB=5cm,BC=3cm,若動點P從點C開始,按CABC的路徑運動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求△ABP的周長.

2)問t滿足什么條件時,△BCP為直角三角形?

3)另有一點Q,從點C開始,按CBAC的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達終點時,另一點也停止運動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個甲殼蟲同時從點A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1A1D1→……,白甲殼蟲爬行的路線是ABBB1→……,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個甲殼蟲各爬行完第2018條棱分別停止在所到的正方體頂點處時,它們之間的距離是( )

A. 0 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時間x(天)的關(guān)系如圖中線段l1所示,針對這種干旱情況,從第20天開始向水庫注水,注水量y2(萬m3)與時間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).
(1)求原有蓄水量y1(萬m3)與時間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時的水庫總蓄水量.
(2)求當(dāng)0≤x≤60時,水庫的總蓄水量y(萬m3)與時間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過反比例函數(shù)y= (x>0)的圖象上一點A作AB⊥x軸于點B,連接AO,若SAOB=2,則k的值為( 。

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)絡(luò)中,給出了格點ABC頂點是網(wǎng)絡(luò)線的交點和點A1畫出一個格點A1B1C1,使它與ABC全等且A與A1是對應(yīng)點;

2如圖,已知ABC 的三個頂點的坐標(biāo)分別為A-3,-3,B-2,-1C-1,-2).

畫出ABC關(guān)于x軸對稱的圖形;

點B關(guān)于y軸對稱的點的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,我們稱此三角形為“夢想三角形”.如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEAB的垂直平分線.

(1)已知AC=5cm,△ADC的周長為17cm,則BC的長__________

(2)若AD平分∠BAC,AD=AC,則∠C= __________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案