【題目】對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.
(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;
(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;
(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.
【答案】(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥11
【解析】
(1)根據(jù)勾股定理,可得AB的長,根據(jù)圓的面積公式,可得答案;
(2)根據(jù)確定圓,可得l與⊙A相切,根據(jù)圓的面積,可得AB的長為3,根據(jù)等腰直角三角形的性質(zhì),可得,可得答案;
(3)根據(jù)圓心與直線垂直時圓心到直線的距離最短,根據(jù)確定圓的面積,可得PB的長,再根據(jù)30°的直角邊等于斜邊的一半,可得CA的長.
(1)(1)∵A的坐標為(1,0),B的坐標為(3,3),
∴AB==5,
根據(jù)題意得點A,B的“確定圓”半徑為5,
∴S圓=π×52=25π.
故答案為25π;
(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積
為9π,
∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,
∴AB⊥CD,∠DCA=45°.
,
①當b>0時,則點B在第二象限.
過點B作BE⊥x軸于點E,
∵在Rt△BEA中,∠BAE=45°,AB=3,
∴.
∴.
②當b<0時,則點B'在第四象限.
同理可得.
綜上所述,點B的坐標為或.
(3)如圖2,
,
直線當y=0時,x=3,即C(3,0).
∵tan∠BCP=,
∴∠BCP=30°,
∴PC=2PB.
P到直線的距離最小是PB=4,
∴PC=8.
3-8=-5,P1(-5,0),
3+8=11,P(11,0),
當m≤-5或
點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥11.
科目:初中數(shù)學 來源: 題型:
【題目】鮮豐水果店計劃用元/盒的進價購進一款水果禮盒以備銷售.
據(jù)調(diào)查,當該種水果禮盒的售價為元/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應不高于多少元?
在實際銷售時,由于天氣和運輸?shù)脑,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,圖形G上點P(x,y)的縱坐標y與其橫坐標x的差y-x稱為P點的“坐標差”,而圖形G上所有點的“坐標差”中的最大值稱為圖形G的“特征值”
(1)①點A(1,3) 的“坐標差”為 。
②拋物線y=-x2+3x+3的“特征值”為 。
(2)某二次函數(shù)y=-x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標差”相等。
①直接寫出m= (用含c的式子表示)
②求此二次函數(shù)的表達式。
(3)如圖,在平面直角坐標系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點D、E請直接寫出⊙M的“特征值”為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以O為圓心作⊙O交x軸正半軸于A,P為⊙O上的動點(點P不在坐標軸上),過點P作PC⊥x軸,PD⊥y軸于點C、D,B為CD中點,連接AB則∠BAO的最大值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關(guān)系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF、GH折疊(點E、H在AD邊上,點F、G在BC邊上),使得點B、點C落在AD邊上同一點P處,A點的對稱點為點,D點的對稱點為點,若,的面積為4,的面積為1,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線(m為常數(shù))交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.①拋物線與直線有且只有一個交點;②若點、點、點在該函數(shù)圖象上,則;③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為;④點A關(guān)于直線的對稱點為C,點D、E分別在x軸和y軸上,當時,四邊形BCDE周長的最小值為.其中正確判斷的序號是__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com