【題目】已知關(guān)于x的方程2x-a-6=0 的解為x=4,則a=_____________.

【答案】2.

【解析】

x=4代入2x-a-6=0,解關(guān)于a的方程即可求出a的值.

x=4代入2x-a-6=0,得

8-a-6=0,

a=2.

故答案為:2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,E.
證明:DE=BD+CE.

(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

(3)拓展與應(yīng)用:如圖(3),D,E是D,A,E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D,A, E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成證明,說(shuō)明理由. 已知:如圖,點(diǎn)D在BC邊上,DE、AB交于點(diǎn)F,AC∥DE,∠1=∠2,∠3=∠4.
求證:AE∥BC.
證明:∵AC∥DE(已知),
∴∠4=
∵∠3=∠4(已知),
∴∠3=
∵∠1=∠2(已知),
∴∠1+∠FAD=∠2+∠FAD(
即∠FAC=∠EAD,
∴∠3=
∴AE∥BC(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)計(jì)算:2(x+y)(x﹣y)﹣(x+y)2
(2)解方程: ;
(3)先化簡(jiǎn),再求值:v,在0,1,2三個(gè)數(shù)中選一個(gè)合適的數(shù)并代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù):2,5,4,3,2的中位數(shù)是( )
A.4
B.3.2
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C(0,5).

(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)D是笫一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)C、B不重合),過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,交直線BC于點(diǎn)E,連結(jié)BD、CD.設(shè)點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.

①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍;

②當(dāng)m為何值時(shí),S有最大值,并求這個(gè)最大值;

③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請(qǐng)求出點(diǎn)D的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學(xué)記數(shù)法表示為( 。

A. 8.23×106 B. 8.23×107 C. 8.23×106 D. 8.23×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工廠今年一月份生產(chǎn)化工原料15萬(wàn)噸,通過(guò)優(yōu)化管理,產(chǎn)量逐月上升,第一季度共生產(chǎn)化工原料60萬(wàn)噸,設(shè)一、二月份平均增長(zhǎng)的百分率相同,均為x,可列出方程為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】m是方程x2x10的一個(gè)解,則mm+12m2m+3+4的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案