【題目】如圖所示.某校計劃將一塊形狀為銳角三角形ABC的空地進(jìn)行生態(tài)環(huán)境改造.已知△ABC的邊BC120米,高AD80米.學(xué)校計劃將它分割成△AHG、△BHE△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其余兩個頂點(diǎn)H、G分別在邊ABAC上.現(xiàn)計劃在△AHG上種草,每平方米投資6元;在△BHE、△FCG上都種花,每平方米投資10元;在矩形EFGH上興建愛心魚池,每平方米投資4元.

1)當(dāng)FG長為多少米時,種草的面積與種花的面積相等?

2)當(dāng)矩形EFGH的邊FG為多少米時,△ABC空地改造總投資最小,最小值為多少?

【答案】140;(2FG=60時,△ABC空地改造總投資最小,最小值為26400

【解析】

1)可利用相似分別表示出相應(yīng)的三角形的底與高,讓面積相等即可;

2)把相應(yīng)的總投資用含x的代數(shù)式表示出后,求出二次函數(shù)的最值即可.

解:(1)設(shè)FG=x米,則AK=80x)米.

△AHG∽△ABC,BC=120,AD=80,

可得:,

∴HG=BE+FC=120﹣(=,

,

解得

當(dāng)FG的長為40米時,種草的面積和種花的面積相等.

2)設(shè)改造后的總投資為W元.

W=

=

二次項系數(shù)60,0x≤80,

當(dāng)x=20時,W最小=26400

答:當(dāng)矩形EFGH的邊FG長為20米時,空地改造的總投資最小,最小值為26400元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),以為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)軸,交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑畫弧,交直線于點(diǎn),過點(diǎn)作軸交直線于點(diǎn),以點(diǎn)為圓心,以長為半徑面弧,交直線于點(diǎn),…,按照如此規(guī)律進(jìn)行下去,點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020516日,錢塘江詩路航道全線開通,一艘游輪從杭州出發(fā)前往衢州,線路如圖1所示.當(dāng)游輪到達(dá)建德境內(nèi)的七里揚(yáng)帆景點(diǎn)時,一艘貨輪沿著同樣的線路從杭州出發(fā)前往衢州.已知游輪的速度為20km/h,游輪行駛的時間記為th),兩艘輪船距離杭州的路程skm)關(guān)于th)的圖象如圖2所示(游輪在?壳昂蟮男旭偹俣炔蛔儯

1)寫出圖2C點(diǎn)橫坐標(biāo)的實(shí)際意義,并求出游輪在七里揚(yáng)帆?康臅r長.

2)若貨輪比游輪早36分鐘到達(dá)衢州.問:

①貨輪出發(fā)后幾小時追上游輪?

②游輪與貨輪何時相距12km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校舉行“經(jīng)典誦讀”比賽,誦讀材料有:A《唐詩》、B《宋詞》、C《論語》.將A、BC這三個字母分別寫在3張完全相同的不透明卡片的正面上,把這3張卡片背面朝上洗勻后放在桌面上.小紅和小亮參加誦讀比賽,比賽時小紅先從中隨機(jī)抽取一張卡片,記錄下卡片上的內(nèi)容,放回后洗勻,再由小亮從中隨機(jī)抽取一張卡片,選手按各自抽取的卡片上的內(nèi)容進(jìn)行比賽.

1)小紅誦讀《論語》的概率是   ;

2)請用列表法或畫樹狀圖的方法,求小紅和小亮誦讀兩個相同材料的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓桌正上方的燈泡O發(fā)出的光線照射桌面后,在地面上形成圓形陰影.已知桌面的直徑為1.2m,桌面距離地面1m,若燈泡O距離地面3m,則地面上陰影部分的面積為( 。

A.0.36πm2B.0.81πm2C.1.44πm2D.3.24πm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組建了書法、音樂、美術(shù)、舞蹈、演講5個社團(tuán),隨機(jī)調(diào)查了部分學(xué)生.被調(diào)查學(xué)生每人都參加且只參加了其中一個社團(tuán)活動,并將調(diào)查結(jié)果制成了如圖兩幅不完整的統(tǒng)計圖,在扇形統(tǒng)計圖中,“音樂”所對應(yīng)的扇形圓心角度數(shù)是( )度.

A.25%B.25C.60D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面立角坐標(biāo)系中,反比例函數(shù)yk≠0,x0)與一次函數(shù)yax+b的圖象交于點(diǎn)A(3,1)、B(m,3).點(diǎn)C的坐標(biāo)為(1,0),連接AC,BC

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)當(dāng)x0時,直接寫出不等式≥ax+b的解集   

3)若點(diǎn)My軸的正半軸上的動點(diǎn),當(dāng)ACM是直角三角形時,直接寫出點(diǎn)M的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)的橫、縱坐標(biāo)的絕對值之和叫做點(diǎn)的勾股值,記.若拋物線與直線只有一個交點(diǎn),已知點(diǎn)在第一象限,且,令,則的取值范圍為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點(diǎn)和點(diǎn),頂點(diǎn)為,拋物線與拋物線關(guān)于原點(diǎn)對稱.

1)求拋物線的函數(shù)表達(dá)式及點(diǎn)的坐標(biāo);

2)已知點(diǎn)、在拋物線上的對應(yīng)點(diǎn)分別為、的對稱軸交軸于點(diǎn),則拋物線的對稱軸上是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案