【題目】如圖,在一張長(zhǎng)為5cm,寬為4cm的長(zhǎng)方形紙片上,現(xiàn)要剪下一個(gè)腰長(zhǎng)為3cm的等腰三角形(要求:等腰三角形的一個(gè)頂點(diǎn)與長(zhǎng)方形的一個(gè)頂點(diǎn)重合,其余的兩個(gè)頂點(diǎn)在長(zhǎng)方形的邊上),則剪下的等腰三角形的底邊的長(zhǎng)為________________cm.

【答案】

【解析】

因?yàn)榈妊切窝奈恢貌幻鞔_,所以分(1)腰長(zhǎng)在矩形相鄰的兩邊上,(2)一腰在矩形的寬上,(3)一腰在矩形的長(zhǎng)上,三種情況討論.(1)AEF為等腰直角三角形,直接利用直接勾股定理求解即可;(2)先利用勾股定理求出AE邊上的高BF,再利用勾股定理求出結(jié)論;(3)先利用勾股定理求出BF,再利用勾股定理求出底邊.

分三種情況計(jì)算:
(1)當(dāng)AE=AF=3時(shí),如圖:

EF=;
(2)當(dāng)AE=EF=3時(shí),如圖:

BE=4-3=1,
BF=,
AF;
(3)當(dāng)AE=EF=3時(shí),如圖:

DE=5-3=2,
DF=
AF=,
故答案為:3,,2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集表示在數(shù)軸上,正確的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,每個(gè)小正方形的邊長(zhǎng)都為1.

(1)圖中陰影正方形的面積是多少?它的邊長(zhǎng)是多少?

(2)估計(jì)陰影正方形的邊長(zhǎng)在哪兩個(gè)整數(shù)之間;

(3)把表示陰影正方形的邊長(zhǎng)的點(diǎn)在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別交x、y軸于點(diǎn)A、B,直線BC分別交x、y軸于點(diǎn)C、B,點(diǎn)A的坐標(biāo)為(3,0),ABO=30°,且AB⊥BC.

(1)求直線BC和AB的解析式;

(2)將點(diǎn)B沿某條直線折疊到點(diǎn)O,折痕分別交BC、BA于點(diǎn)E、D,在x軸上是否存在點(diǎn)F,使得點(diǎn)D、E、F為頂點(diǎn)的三角形是以DE為斜邊的直角三角形?若存在,請(qǐng)求出F點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)在平面直角坐標(biāo)系內(nèi)是否存在兩個(gè)點(diǎn),使得這兩個(gè)點(diǎn)與B、C兩點(diǎn)構(gòu)成的四邊形是正方形?若存在,請(qǐng)求出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的頂點(diǎn)A、B、D均在⊙O上,請(qǐng)僅用無(wú)刻度的直尺按要求作圖.
(1)AB邊經(jīng)過圓心O,在圖(1)中作一條與AD邊平行的直徑;
(2)AB邊不經(jīng)過圓心O,DC與⊙O相切于點(diǎn)D,在圖(2)中作一條與AD邊平行的弦.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程mx2+(2m﹣1)x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在兩個(gè)不透明的口袋中分別裝有三個(gè)顏色分別為紅色、白色、綠色的小球,這三個(gè)小球除顏色外其他都相同,
(1)在其中一個(gè)口袋中一次性隨機(jī)摸出兩個(gè)球,請(qǐng)寫出在這一過程中的一個(gè)必然事件;
(2)若分別從兩個(gè)袋中隨機(jī)取出一個(gè)球,試求出兩個(gè)小球顏色相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案