【題目】如圖,線段AB經(jīng)過旋轉(zhuǎn)變換得到線段A1B1,A的對應(yīng)點為A1,B的對應(yīng)點為B1.
(1)在圖中畫出旋轉(zhuǎn)中心O;
(2)設(shè)線段AB和線段A1B1交于點P,線段AB逆時針旋轉(zhuǎn)的最小旋轉(zhuǎn)角為,若∠APB1 ,請直接寫出,滿足的等量關(guān)系.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意連接AA1,BB1,作AA1,BB1的垂直平分線交于一點O,即可得到結(jié)論;
(2)由題意連接OA.OA1,OB,OB1,得到∠AOA1=∠BOB1=α,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠OAP=∠OA1P,根據(jù)平角的定義即可得到結(jié)論.
解:(1)如圖所示,連接AA1,BB1,
作AA1,BB1的垂直平分線交于一點O,
點O即為所求;
(2)連接OA.OA1,OB,OB1,如上圖,
∴∠AOA1=∠BOB1=α,
∵線段AB經(jīng)過旋轉(zhuǎn)變換得到線段A1B1,A的對應(yīng)點為A1,B的對應(yīng)點為B1,
∴△AOB≌△A1OB1,
∴∠OAP=∠OA1P,
∴∠AOA1=∠APA1=α,
∵∠APB1=β,
∴α+β=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=3,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則四邊形ABEF的周長為( )
A.12B.14C.16D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(m﹣2)x2+2mx+m﹣3的圖象與x軸有兩個交點,(x1,0),(x2,0),則下列說法正確是( )
①該函數(shù)圖象一定過定點(﹣1,﹣5);
②若該函數(shù)圖象開口向下,則m的取值范圍為:m<2;
③當(dāng)m>2,且1≤x≤2時,y的最大值為:4m﹣5;
④當(dāng)m>2,且該函數(shù)圖象與x軸兩交點的橫坐標(biāo)x1,x2滿足﹣3<x1<﹣2,﹣1<x2<0時,m的取值范圍為:m<11.
A.①②③④B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路.現(xiàn)新修一條路AC到公路l.小明測量出∠ACD=31°,∠ABD=45°,BC=50m.請你幫小明計算他家到公路l的距離AD的長度?(精確到0.1m;參考數(shù)據(jù) tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),正方形如圖擺放,已知頂點 A(a,0),B(0,b) ,則頂點C的坐標(biāo)為( )
A.(-b,a b)B.(-b,b - a)C.(-a,b - a)D.(b,b -a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一根直尺短邊長,長邊長,還有一塊銳角為45°的直角三角形紙板,它的斜邊長為.如圖1,將直尺的短邊與直角三角形紙板的斜邊重合,且點與點重合.將直尺沿射線方向平移,如圖2,設(shè)平移的長度為,且滿足,直尺和三角形紙板重疊部分的面積為.
(1)當(dāng)時, ;當(dāng)時, ;當(dāng)時, .
(2)當(dāng)時(如圖3),請用含的代數(shù)式表示.
(3)是否存在一個位置,使重疊部分面積為?若存在求出此時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,關(guān)于x的二次函數(shù)y=ax2﹣2ax(a>0)的頂點為C,與x軸交于點O、A,關(guān)于x的一次函數(shù)y=﹣ax(a>0).
(1)試說明點C在一次函數(shù)的圖象上;
(2)若兩個點(k,y1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請求出k的值;如果不存在,請說明理由;
(3)若點E是二次函數(shù)圖象上一動點,E點的橫坐標(biāo)是n,且﹣1≤n≤1,過點E作y軸的平行線,與一次函數(shù)圖象交于點F,當(dāng)0<a≤2時,求線段EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科研小組計劃對某一品種的西瓜用兩種種植技術(shù)種植.在選擇種植技術(shù)時,該科研小組主要關(guān)心的問題是:西瓜的產(chǎn)量和產(chǎn)量的穩(wěn)定性,以及西瓜的優(yōu)等品率.為了解這兩種種植技術(shù)種出的西瓜的質(zhì)量情況,科研小組各對兩塊自然條件相同的試驗田進(jìn)行對比試驗,并從這兩塊實驗田中隨機(jī)抽取20個西瓜,分別稱重后,將稱重的結(jié)果記錄如下:
回答下列問題:
(1)若將質(zhì)量為4.5~5.5(單位:kg)的西瓜記為優(yōu)等品,完成下表:
優(yōu)等品西瓜個數(shù) | 平均數(shù) | 方差 | |
甲種種植技術(shù)種出的西瓜質(zhì)量 | 4.98 | 0.27 | |
乙種種植技術(shù)種出的西瓜質(zhì)量 | 15 | 4.97 | 0.21 |
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該科研小組應(yīng)選擇哪種種植技術(shù)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州某企業(yè)安排名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)件甲或件乙,甲產(chǎn)品每件可獲利元.根據(jù)市場需求和生產(chǎn)經(jīng)驗,乙產(chǎn)品每天產(chǎn)量不少于件,當(dāng)每天生產(chǎn)件時,每件可獲利元, 每增加件,當(dāng)天平均每件利潤減少元.設(shè)每天安排人生產(chǎn)乙產(chǎn)品.
根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | __________ | _____________ | |
乙 | _____________ |
若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多元,求每件乙產(chǎn)品可獲得的利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com