【題目】已知、的對邊分別是,,下列給出了五組條件:①;;;;⑤,,其中能獨(dú)立判定是直角三角形的條件有(

A.2B.3C.4D.5

【答案】C

【解析】

根據(jù)三角形的內(nèi)角和定理和勾股定理逆定理對各選項(xiàng)分析判斷即可求出答案.

:①∵∠A:B:C=1:2:3,∴∠A+B+C=180°,

∴∠A+2A+3A=180°, ∴∠C=90°, 是直角三角形;
②∵a:b:c=3:4:5,∴(3x)+(4x)=(5x) ,∴是直角三角形;
③∵∠A=B+C是直角三角形,而2A=B+C不是直角三角形;
④∵a-c=bc為斜邊的直角三角形;
⑤∵a=1,b=2,c=1+2=2∴此三角形是以b為斜邊的直角三角形.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,⊙O的直徑AB=10cm,弦AC=6cm,ACB的平分線交⊙O于點(diǎn)D,

(1)求證:△ABD是等腰三角形;

(2)CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)PAD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以P、DQ、B四點(diǎn)組成平行四邊形的次數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知分式 A

1)化簡這個(gè)分式;

2)當(dāng) a2 時(shí),把分式 A 化簡結(jié)果的分子與分母同時(shí)加上 4 后得到分式 B,問:分式 B 的值較原來分式 A 的值是變大了還是變小了?試說明理由;

3)若 A 的值是整數(shù),且 a 也為整數(shù),求出符合條件的所有 a 值的和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長度;

(2)設(shè)直線BCy軸交于點(diǎn)M,點(diǎn)CBM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個(gè)單位長度的半圓O1、O2、O3,,組成一條平滑的曲線,點(diǎn)P從原點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒個(gè)單位長度,則第2019秒時(shí),點(diǎn)P的坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,且、、三點(diǎn)共線,交于點(diǎn)

1)求證:

2)若,,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形ABCD,E為邊AD上一點(diǎn),△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后得到△ADF

如果∠AEB65°,求∠DFE的度數(shù);

BEDF的數(shù)量關(guān)系如何?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).

(1)求k、m的值;

(2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.

①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案