【題目】如圖,中,,,若動(dòng)點(diǎn)P從點(diǎn)C開始,按的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.

出發(fā)2秒后,求的面積;

當(dāng)t為幾秒時(shí),BP平分;

t為何值時(shí),為等腰三角形?

【答案】(1)18;(2)當(dāng)秒時(shí),BP平分;(3)13s12s時(shí)為等腰三角形.

【解析】

1)利用勾股定理得出AC=8cm,進(jìn)而表示出AP的長,進(jìn)而得出答案;

2)過點(diǎn)PPDAB于點(diǎn)DHL證明RtBPDRtBPC,得出BD=BC=6cm,因此AD=106=4cm,設(shè)PC=x cmPA=(8xcm,由勾股定理得出方程,解方程即可

3)利用分類討論的思想和等腰三角形的特點(diǎn)及三角形的面積求出答案

1)如圖1

∵∠C=90°,AB=10cm,BC=6cm,AC=8cm根據(jù)題意可得PC=2cm,AP=6cm故△ABP的面積為×AP×BC=×6×6=18cm2);

2)如圖2所示,過點(diǎn)PPDAB于點(diǎn)D

BP平分∠CBA,PD=PC

RtBPDRtBPC,RtBPDRtBPCHL),BD=BC=6 cmAD=106=4 cm

設(shè)PC=x cm,PA=(8xcm

RtAPD,PD2+AD2=PA2,x2+42=(8x2,解得x=3,∴當(dāng)t=3秒時(shí),BP平分∠CBA;

3)如圖3,P在邊AC上時(shí)BC=CP=6cm,此時(shí)用的時(shí)間為6s,BCP為等腰三角形;

PAB邊上時(shí)3種情況

①如圖4,若使BP=CB=6cm,此時(shí)AP=4cmP運(yùn)動(dòng)的路程為12cm,所以用的時(shí)間為12s,t=12s時(shí)△BCP為等腰三角形

②如圖5,CP=BC=6cmC作斜邊AB的高,根據(jù)面積法求得高為4.8cm根據(jù)勾股定理求得BP=7.2cm,所以P運(yùn)動(dòng)的路程為187.2=10.8cmt的時(shí)間為10.8s,BCP為等腰三角形;

③如圖6,BP=CP時(shí),則∠PCB=PBC

∵∠ACP+∠BCP=90°,PBC+∠CAP=90°,∴∠ACP=CAPPA=PC,PA=PB=5cm

P的路程為13cm,所以時(shí)間為13s時(shí),BCP為等腰三角形

綜上所述當(dāng)t=6s13s12s 10.8s 時(shí)△BCP為等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A為頂點(diǎn)的等腰ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)D,過點(diǎn)D作EFBC分別交AB、AC于E、F.

(1)求證:BE=DE;

(2)若ABC的周長比AEF的周長大10,試求出BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提高學(xué)生身體素質(zhì),決定開展足球、籃球、臺(tái)球、乒乓球四項(xiàng)課外體育活動(dòng),并要求學(xué)生必須并且只能選擇一項(xiàng).為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題.(要求寫出簡要的解答過程)

(1)這次活動(dòng)一共調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若該學(xué)??cè)藬?shù)是1300人,請(qǐng)估計(jì)選擇籃球項(xiàng)目的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=6,E、F為AB的三等分點(diǎn),M、N為 上兩點(diǎn),且∠MEB=∠NFB=60°,則EM+FN=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)超市一段時(shí)間每天訂購面包進(jìn)行銷售,每售出1個(gè)面包獲利潤0.5元,未售出的每個(gè)虧損0.3元.

(1)若該超市每天訂購面包80個(gè),今后每天售出的面包個(gè)數(shù)用x(0<x≤80)表示,每天銷售面包的利潤用y(元)表示,請(qǐng)用含x的式子表示y;

(2)小明連續(xù)m天對(duì)該超市的面包銷量進(jìn)行統(tǒng)計(jì),并制成了頻數(shù)分布直方圖(每組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖,如圖所示.請(qǐng)根據(jù)兩圖提供的信息計(jì)算在m天內(nèi)日銷售利潤少于32元的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B是反比例函數(shù)y= 圖象上的兩點(diǎn),過點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D,若D為OB的中點(diǎn),△AOD的面積為3,則k的值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】潛山市某村辦工廠,今年前5個(gè)月生產(chǎn)某種產(chǎn)品的總量C(件)關(guān)于時(shí)間t(月)的函數(shù)圖象如圖所示,則該廠對(duì)這種產(chǎn)品來說( 

A. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月每月生產(chǎn)總量逐月減少

B. 1月至3月每月生產(chǎn)總量逐月增加,4,5兩月每月生產(chǎn)量與3月持平

C. 1月至3月每月生產(chǎn)總量逐月增加,4、5兩月均停止生產(chǎn)

D. 1月至3月每月生產(chǎn)總量不變,4、5兩月均停止生產(chǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個(gè)小正方形的邊長為 的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).從一個(gè)格點(diǎn)移動(dòng)到與之相距 的另一個(gè)格點(diǎn)的運(yùn)動(dòng)稱為一次跳馬變換.例如,在 的正方形網(wǎng)格圖形中(如圖1),從點(diǎn) 經(jīng)過一次跳馬變換可以到達(dá)點(diǎn) , , 等處.現(xiàn)有 的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點(diǎn) 經(jīng)過跳馬變換到達(dá)與其相對(duì)的頂點(diǎn) ,最少需要跳馬變換的次數(shù)是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案