【題目】如圖,等腰△ABC中,AB=AC=,BC=4,點B在y軸上,BC∥x軸,反比例函數(shù)(x>0)的圖像經(jīng)過點A,交BC于點D.
(1)若OB=3,求k的值;
(2)連接CO,若AB=BD,求四邊形ABOC的周長.
【答案】(1)k=9;(2).
【解析】
(1)過點A作AH⊥BC于點H,求出AH和BH的長,即可確定A點坐標,從而求出k的值;
(2)設(shè)B點坐標為(0,a),寫出A,D兩點的坐標,根據(jù)A,D都在反比例函數(shù)上,求出a,k的值,從而求出周長.
解:(1)過點A作AH⊥BC于點H,
∵AB=AC=,BC=4,
∴BH=,
在Rt△ABH中,
,
∵OB=3,
∴A點坐標為,
把A代入反比例函數(shù)中,得,
解得:k=9;
(2)設(shè)B點坐標為(0,a),
∵BD=AB,
∴D點坐標為,
∴A點坐標為,
∵反比例函數(shù)經(jīng)過A,D兩點,
∴把A,D兩點代入反比例函數(shù)中,得:,
解得:,
則D點坐標為,A點坐標為,
在Rt△OBC中,
,
∴四邊形ABOC的周長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(shè)(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.下列說法不正確的是( )
A.與∠1互余的角只有∠2B.∠A與∠B互余
C.∠1=∠BD.若∠A=2∠1,則∠B=30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“不覽夜景,味道重慶.”乘游船也有兩江,猶如在星河中暢游,是一個近距離認識重慶的最佳窗口.“兩江號”游輪經(jīng)過核算,每位游客的接待成本為30元.根據(jù)市場調(diào)查,同一時段里,票價為40元時,每晚將售出船票600張,而票價每漲1元,就會少售出10張船票.
(1)若該游輪每晚獲得10000元利潤的同時,適當控制游客人數(shù),保持應(yīng)有的服務(wù)水準,則票價應(yīng)定為多少元?
(2)春節(jié)期間,工商管理部門規(guī)定游輪船票單價不能低于44元,同時該游輪為提高市場占有率,決定每晚售出船票數(shù)量不少于540張,則票價應(yīng)定為多少元,才能使每晚獲得的利潤最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,求∠BCE的度數(shù);
(2)如圖2,當點D在線段BC上,如果∠BAC=60°,則∠BCE的度數(shù);
(3)設(shè)∠BAC=α,∠BCE=β,如圖3,當點D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是平行四邊形,點A、B在x軸上,點C、D在第二象限,點M是BC中點.已知AB=6,AD=8,∠DAB=60°,點B的坐標為(-6,0).
(1)求點D和點M的坐標;
(2)如圖①,將□ABCD沿著x軸向右平移a個單位長度,點D的對應(yīng)點和點M的對應(yīng)點恰好在反比例函數(shù)(x>0)的圖像上,請求出a的值以及這個反比例函數(shù)的表達式;
(3)如圖②,在(2)的條件下,過點M,作直線l,點P是直線l上的動點,點Q是平面內(nèi)任意一點,若以,P、Q為頂點的四邊形是矩形,請直接寫出所有滿足條件的點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,.
(1)若于,于,判斷與數(shù)量關(guān)系,并說明理由.
(2)如果,,求的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的菱形ABCD中,∠DAB=60°,E是異于A、D兩點的動點,F是CD上的動點,滿足AE+CF=a,△BEF的周長最小值是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com