【題目】如圖1所示,在Rt△ABC中,∠C=90°,點(diǎn)D是線段CA延長線上一點(diǎn),且AD=AB.點(diǎn)F是線段AB上一點(diǎn),連接DF,以DF為斜邊作等腰Rt△DFE,連接EA,EA滿足條件EA⊥AB.
(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的長度;
(2)求證:AE=AF+BC;
(3)如圖2,點(diǎn)F是線段BA延長線上一點(diǎn),探究AE、AF、BC之間的數(shù)量關(guān)系,并證明.
【答案】(1)(2)證明見解析;(3)AE+AF=BC,證明見解析
【解析】
試題分析:(1)在等腰直角三角形DEF中,∠DEF=90°,求得∠1=20°,根據(jù)余角的定義得到∠2=∠DEF﹣∠1=70°,根據(jù)三角形的內(nèi)角和得到∠3=60°,∠4=30°根據(jù)三角函數(shù)的定義得到cos∠4=,于是得到結(jié)論;
(2)如圖1,過D作DM⊥AE于D,在△DEM中,由余角的定義得到∠2+∠5=90°,由于∠2+∠1=90°,推出∠1=∠5證得△DEM≌△EFA,根據(jù)全等三角形的性質(zhì)得到AF=EM,根據(jù)三角形的內(nèi)角和和余角的定義得到∠3=∠B,推出△DAM≌△ABC,根據(jù)全等三角形的性質(zhì)得到BC=AM即可得到結(jié)論;
(3)如圖2,過D作DM⊥AE交AE的延長線于M根據(jù)余角的定義和三角形的內(nèi)角和得到∠2=∠B,證得△ADM≌△BAC,由全等三角形的性質(zhì)得到BC=AM,由于EF=DE,∠DEF=90°,推出∠4=∠5,證得△MED≌△AFE,根據(jù)全等三角形的性質(zhì)得到ME=AF,即可得到結(jié)論.
解:(1)在等腰直角三角形DEF中,∠DEF=90°,
∵∠1=20°,
∴∠2=∠DEF﹣∠1=70°,
∵∠EDA+∠2+∠3=180°,
∴∠3=60°,
∵EA⊥AB,
∴∠EAB=90°,
∵∠3+∠EAB+∠A=180°,
∴∠4=30°,
∵∠C=90°,
∴cos∠4=,
∴AB===;
(2)如圖1,過D作DM⊥AE于D,在△DEM中,∠2+∠5=90°,
∵∠2+∠1=90°,
∴∠1=∠5,
∵DE=FE,
在△DEM與△EFA中,
,
∴△DEM≌△EFA,
∴AF=EM,
∵∠4+∠B=90°,
∵∠3+∠EAB+∠4=180°,
∴∠3+∠4=90°,
∴∠3=∠B,
在△DAM與△ABC中,
,
∴△DAM≌△ABC,
∴BC=AM,
∴AE=EM+AM=AF+BC;
(3)如圖2,過D作DM⊥AE交AE的延長線于M,
∵∠C=90°,
∴∠1+∠B=90°,
∵∠2+∠MAB+∠1=180°,∠MAB=90°,
∴∠2+∠1=90°,∠2=∠B,
在△ADM與△BAC中,
,
∴△ADM≌△BAC,
∴BC=AM,
∵EF=DE,∠DEF=90°,
∵∠3+∠DEF+∠4=180°,
∴∠3+∠4=90°,
∵∠3+∠5=90°,
∴∠4=∠5,
在△MED與△AFE中,
,
∴△MED≌△AFE,
∴ME=AF,
∴AE+AF=AE+ME=AM=BC,
即AE+AF=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家庭過期藥品屬于“國家危險(xiǎn)廢物“處理不當(dāng)將污染環(huán)境,危害健康.某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對(duì)全市家庭作一次簡單隨機(jī)抽樣調(diào)查本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如圖:
(1)求m、n的值;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)家庭過期藥品的正確處理方式是送回收站,若該市有180萬戶家庭,請(qǐng)估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收站.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列:0,2,4,8,12,18,…是我國的大衍數(shù)列,也是世界數(shù)學(xué)史上第一道數(shù)列題.該數(shù)列中的奇數(shù)項(xiàng)可表示為,偶數(shù)項(xiàng)表示為.
如:第一個(gè)數(shù)為=0,第二個(gè)數(shù)為=2,…
現(xiàn)在數(shù)軸的原點(diǎn)上有一點(diǎn)P,依次以大衍數(shù)列中的數(shù)為距離向左右來回跳躍.
第1秒時(shí),點(diǎn)P在原點(diǎn),記為P1;
第2秒時(shí),點(diǎn)P向左跳2個(gè)單位,記為P2,此時(shí)點(diǎn)P2所表示的數(shù)為-2;
第3秒時(shí),點(diǎn)P向右跳4個(gè)單位,記為P3,此時(shí)點(diǎn)P3所表示的數(shù)為2;
…
按此規(guī)律跳躍,點(diǎn)P20表示的數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為-4,8.
(1)如圖1,如果點(diǎn)P和點(diǎn)Q分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā),沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動(dòng)速度為每秒6個(gè)單位.
① 求A,B兩點(diǎn)之間的距離.
② 當(dāng)P,Q兩點(diǎn)相遇時(shí),點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)幾.
③ 求點(diǎn)P出發(fā)多少秒后,與點(diǎn)Q之間相距4個(gè)單位長度?
(2)如圖2,如果點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸的正方向以每秒2個(gè)單位的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿?cái)?shù)軸的負(fù)方向以每秒6個(gè)單位的速度運(yùn)動(dòng),點(diǎn)M從數(shù)軸原點(diǎn)O出發(fā)沿?cái)?shù)軸的正方向以每秒1個(gè)單位的速度運(yùn)動(dòng),若三個(gè)點(diǎn)同時(shí)出發(fā),經(jīng)過多少秒后有MP=MQ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正確的結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限內(nèi),點(diǎn)B在x軸上,∠AOB=30°,AB=BO,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A,若S△ABO= ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分線,點(diǎn)E,F(xiàn)分別是邊AC, BC上的動(dòng)點(diǎn),AC=4,設(shè)AE=x,BF=y.
(1)若x+y=3,求四邊形CEDF的面積;
(2)當(dāng)DE⊥DF時(shí),如圖2,試探索x、y之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的F點(diǎn)處,若AB=8cm,BC=10cm,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D,E,F(xiàn)分別在AB,BC,AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=50°時(shí),求∠DEF的度數(shù);
(3)若∠A=∠DEF,判斷△DEF是否為等腰直角三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com