【題目】(1)a(5a-3b)-(a-2b)
(2)2(x2y-xy)-3(xy-x2y)-4x2y,其中x=-1.y=1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B均在邊長為1的正方形網(wǎng)格格點(diǎn)上.
(1)在網(wǎng)格的格點(diǎn)中,找一點(diǎn)C,使△ABC是直角三角形,且三邊長均為無理數(shù)(只畫出一個(gè),并涂上陰影);
(2)若點(diǎn)P在圖中所給網(wǎng)格中的格點(diǎn)上,△APB是等腰三角形,滿足條件的點(diǎn)P共有個(gè);
(3)若將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,寫出旋轉(zhuǎn)后點(diǎn)B的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),其中A,B兩點(diǎn)的橫坐標(biāo)分別為﹣1和﹣4,且拋物線過原點(diǎn).
(1)求拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)C,使△ABC為等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;
(3)若點(diǎn)P是線段AB上不與A,B重合的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,與拋物線第三象限的部分交于一點(diǎn)E,過點(diǎn)E作EG⊥x軸于點(diǎn)G,交AB于點(diǎn)F,若S△BGF=3S△EFP,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對某路段道路進(jìn)行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購進(jìn)A種樹苗不能少于50棵,且用于購買這兩種樹苗的資金不能超過7650元,若購進(jìn)這兩種樹苗共100棵,則有哪幾種購買方案?
(3)某包工隊(duì)承包種植任務(wù),若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若2m-4與3m-1是同一個(gè)數(shù)的兩個(gè)不等的平方根,則這個(gè)數(shù)是( )
A. 2B. 一2C. 4D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-4x與x軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對稱軸交于點(diǎn)Q.
(1)這條拋物線的對稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 ;
(2)若兩個(gè)三角形面積滿足S△POQ=S△PAQ,求m的值;
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com