【題目】如圖,四邊形 ABCD 中,AC=a,BD=b,且 AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2,…,如此進(jìn)行下去,得到四邊形AnBnCnDn.下列結(jié)論正確的有( )

①四邊形A2B2C2D2是矩形;

②四邊形A4B4C4D4是菱形;

③四邊形A5B5C5D5的周長是

④四邊形AnBnCnDn的面積是

A. ①②③ B. ②③④ C. ①② D. ②③

【答案】C

【解析】

首先根據(jù)題意,找出變化后的四邊形的邊長與四邊形ABCD中各邊長的長度關(guān)系規(guī)律,然后對以下選項作出分析與判斷:①根據(jù)矩形的判定與性質(zhì)作出判斷;②根據(jù)菱形的判定與性質(zhì)作出判斷;③由四邊形的周長公式:周長=邊長之和,來計算四邊形A5B5C5D5的周長;④根據(jù)四邊形AnBnCnDn的面積與四邊形ABCD的面積間的數(shù)量關(guān)系來求其面積.

連接A1C1,B1D1
∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四邊形A1B1C1D1是平行四邊形;
∵ACBD,∴四邊形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的兩條對角線相等);
∴A2D2=C2D2=C2B2=B2A2(中位線定理),
∴四邊形A2B2C2D2是菱形;
故①錯誤;
②由①知,四邊形A2B2C2D2是菱形;
∴根據(jù)中位線定理知,四邊形A4B4C4D4是菱形;
故②正確;
③根據(jù)中位線的性質(zhì)易知,A5B5=

∴四邊形A5B5C5D5的周長是;

故③正確;
④∵四邊形ABCD中,AC=a,BD=b,且ACBD,
∴S四邊形ABCD=ab÷2;
由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话耄?/span>
四邊形AnBnCnDn的面積是.

故④正確;
綜上所述,②③④正確.
故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個甲殼蟲同時從點A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須既不平行也不相交(其中n是正整數(shù))。那么當(dāng)黑、白兩個甲殼蟲各爬行完第2017條棱分別停止在所到的正方體頂點處時,它們之間的距離是( )

A. 0 B. 1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1是一塊半徑為1的半圓形紙板,在P1的右上端剪去一個直徑為1的半圓后得到圖形P2,然后依次剪去一個更小的半圓(其直徑為前一個被剪去的半圓的半徑)得到圖形P3、P4…Pn…,記紙板Pn的面積為Sn,則S2018-S2019的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校課外體育興趣小組射擊隊日常訓(xùn)練中,教練為了掌握同學(xué)們一階段以來的射擊訓(xùn)練情況,對射擊小組進(jìn)行了射擊測試,根據(jù)他們某次射擊的測試數(shù)據(jù)繪制成不完整的條形統(tǒng)計圖及扇形統(tǒng)計圖如圖所示:

(I)請補(bǔ)全條形統(tǒng)計圖;

(II)填空:該射擊小組共有____個同學(xué),射擊成績的眾數(shù)是_____,中位數(shù)是____;

(III)根據(jù)上述數(shù)據(jù),小明同學(xué)說平均成績與中位數(shù)成績相同,試判斷小明的說法是否正確?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是長方體紙盒的平面展開圖,設(shè) AB=x cm,若 AD =4x cm,AN=3x cm.

(1)求長方形 DEFG 的周長與長方形 ABMN 的周長(用字母 x 進(jìn)行表示);

(2)若長方形 DEFG 的周長比長方形 ABMN 的周長少 8cm,求 x 的值;

(3)在第(2)問的條件下,求原長方體紙盒的容積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學(xué)校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為70分、80分、90分、100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表:

乙校成績統(tǒng)計表

分?jǐn)?shù)/分

人數(shù)/人

70

7

80

90

1

100

8

(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為________;

(2)請你將圖②補(bǔ)充完整;

(3)求乙校成績的平均分;

(4)經(jīng)計算知s2=135,s2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜賓市某化工廠,現(xiàn)有A種原料52千克,B種原料64千克,現(xiàn)用這些原料生產(chǎn)甲、乙兩種產(chǎn)品共20件.已知生產(chǎn)1件甲種產(chǎn)品需要A種原料3千克,B種原料2千克;生產(chǎn)1件乙種產(chǎn)品需要A種原料2千克,B種原料4千克,則生產(chǎn)方案的種數(shù)為(  )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=CB,BE=BF,點A,B,C在同一條直線上,∠1=∠2.

(1)證明:△ABE≌△CBF;

(2)若∠FBE=40°,∠C=45°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運(yùn)動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時,點Q與點D重合?
(2)當(dāng)⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案