【題目】在四邊形ABCD中,,,AC與BD交于點(diǎn)F.
(1) 如圖1,求證:判斷的形狀并證明你的結(jié)論
(2) 如圖2,若,且,猜想:和的數(shù)量關(guān)系并證明
(3) 如圖3,若,點(diǎn)E在AD上,,,,則BD=_____
【答案】(1)是等腰三角形,證明見(jiàn)解析;(2),證明見(jiàn)解析;(3)8.
【解析】
(1)如圖(見(jiàn)解析),延長(zhǎng)BC至點(diǎn)G,使,連接DG,先根據(jù)平行四邊形的判定與性質(zhì)得出,再根據(jù)平行線的性質(zhì)可得,然后根據(jù)等腰三角形的性質(zhì)得出,最后根據(jù)等量代換可得,由此即可得;
(2)如圖(見(jiàn)解析),設(shè),則,先根據(jù)等腰三角形的三線合一得出,,再根據(jù)等腰直角三角形的判定與性質(zhì)得出,從而得出,然后根據(jù)角平分線的判定得出,最后根據(jù)等量代換即可得;
(3)如圖(見(jiàn)解析),設(shè),先利用平行線的性質(zhì)、等腰三角形的性質(zhì)可推出,,再設(shè),從而可得,然后根據(jù),在中利用直角三角形的性質(zhì)可得DG、KG的長(zhǎng),從而在中,利用勾股定理可求出BG的長(zhǎng),由此即可得出答案.
(1)是等腰三角形,證明如下:
如圖,延長(zhǎng)BC至點(diǎn)G,使,連接DG
四邊形ADGC是平行四邊形
是等腰三角形;
(2),證明如下:
如圖,過(guò)點(diǎn)B作于點(diǎn)H,過(guò)點(diǎn)F作于點(diǎn)E
設(shè),則
由(1)知,是等腰三角形
,(等腰三角形的三線合一)
是等腰直角三角形
(角平分線的判定)
即;
(3)如圖,延長(zhǎng)CE、BA交于點(diǎn)H,延長(zhǎng)BC至點(diǎn)K,使,連接DK,過(guò)點(diǎn)K作于點(diǎn)G
設(shè)
,
,即,
四邊形EDKC是平行四邊形
,
設(shè),則,
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,數(shù)軸上三個(gè)點(diǎn)A、O、P,點(diǎn)O是原點(diǎn),固定不動(dòng),點(diǎn)A和B可以移動(dòng),點(diǎn)A表示的數(shù)為,點(diǎn)B表示的數(shù)為.
(1)若A、B移動(dòng)到如圖所示位置,計(jì)算的值.
(2)在(1)的情況下,B點(diǎn)不動(dòng),點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng),寫(xiě)出A點(diǎn)對(duì)應(yīng)的數(shù),并計(jì)算.
(3)在(1)的情況下,點(diǎn)A不動(dòng),點(diǎn)B向右移動(dòng)15.3個(gè)單位長(zhǎng),此時(shí)比大多少?請(qǐng)列式計(jì)算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)全體團(tuán)員積極響應(yīng)團(tuán)委的號(hào)召,開(kāi)展了“牽手兒童,奉獻(xiàn)愛(ài)心”捐款活動(dòng).捐款活動(dòng)結(jié)束后,某班班長(zhǎng)將全班40名團(tuán)員的捐款情況進(jìn)行了統(tǒng)計(jì),并繪制成如下的統(tǒng)計(jì)圖.
(1)這40名團(tuán)員捐款的中位數(shù)是________元,眾數(shù)是________元;
(2)求這40名團(tuán)員捐款的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,∠A,∠B,∠C所對(duì)的邊分別為a,b,c.
(1)已知c=8,∠A=60°,求∠B,a,b;
(2)已知a=3,∠A=45°,求∠B,b,c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和直線l在同一直角坐標(biāo)系中的圖象如圖所示,拋物線的對(duì)稱(chēng)軸為直線x=﹣1,P1(x1,y1),P2(x2,y2)是拋物線上的點(diǎn),P3(x3,y3)是直線l上的點(diǎn),且x3<﹣1<x1<x2,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】代數(shù)之父——丟番圖(Diophantus)是古希臘的大數(shù)學(xué)家,是第一位懂得使用符號(hào)代表數(shù)來(lái)研究問(wèn)題的人. 丟番圖的墓志銘與眾不同,不是記敘文,而是一道數(shù)學(xué)題.對(duì)其墓志銘的解答激發(fā)了許多人學(xué)習(xí)數(shù)學(xué)的興趣,其中一段大意為:他的一生幼年占,青少年占,又過(guò)了才結(jié)婚,5年后生子,子先父4年而卒,壽為其父之半.
下面是其墓志銘解答的一種方法:
解:設(shè)丟番圖的壽命為x歲,根據(jù)題意得:
,
解得.
∴丟番圖的壽命為84歲.
這種解答“墓志銘”體現(xiàn)的思想方法是( )
A.數(shù)形結(jié)合思想B.方程思想C.轉(zhuǎn)化思想D.類(lèi)比思想
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在正方體的展開(kāi)圖上編號(hào),請(qǐng)你寫(xiě)出相對(duì)面的號(hào)碼: 的相對(duì)面是_____, 的相對(duì)面是_______, 的相對(duì)面是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過(guò)點(diǎn)A(3,0)、
B(0,-3),點(diǎn)P是直線AB上的動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫
坐標(biāo)為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長(zhǎng)時(shí),求△ABM的面積.
(3)是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究:
已知在紙面上有一數(shù)軸(如圖所示),
操作一:
(1)折疊紙面,使表示的點(diǎn)1與1表示的點(diǎn)重合,則2表示的點(diǎn)與___表示的點(diǎn)重合;
操作二:
(2)折疊紙面,使1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問(wèn)題:
①5表示的點(diǎn)與數(shù)___表示的點(diǎn)重合;
②表示的點(diǎn)與數(shù)___表示的點(diǎn)重合
若數(shù)軸上A. B兩點(diǎn)之間距離為9,(A在B的左側(cè)),且A. B兩點(diǎn)經(jīng)折疊后重合,求A. B兩點(diǎn)表示的數(shù)是多少?
操作三:
(3)已知在數(shù)軸上點(diǎn)A表示的數(shù)是a,點(diǎn)A移動(dòng)4個(gè)單位,此時(shí)點(diǎn)A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com