【題目】如圖1,在平面直角坐標(biāo)系中,Aa,0),Cb,2),且滿足(a+22+0,過點CCBx軸于點B

1)求A、C兩點坐標(biāo);

2)若過點BBDACy軸于點D,且AEDE分別平分∠CAB、∠ODB,如圖2,求∠AED的度數(shù).

【答案】1A(﹣2,0),C2,2);(2)∠AED的度數(shù)為45°.

【解析】

1)根據(jù)偶次方和絕對值的非負(fù)性,可求得ab的值,則AC兩點坐標(biāo)可以求出;

2)根據(jù)平行線的性質(zhì),得∠CAB+ODB=∠5+690°,再根據(jù)AEDE分別平分∠CAB、∠ODB,得∠1=∠3CAB,∠2=∠4ODB,最后根據(jù)∠AED=∠1+2可求得的度數(shù).

1)∵(a+22+0

a+20,b20,

a=﹣2,b2,

A(﹣2,0),C2,2);

2)∵CBy軸,BDAC,

∴∠CAB=∠5,∠ODB=∠6,

∴∠CAB+ODB=∠5+690°,

過點EEFAC,如圖

BDAC

BDEFAC

AE、DE分別平分∠CAB、∠ODB,

∴∠1=∠3CAB,∠2=∠4ODB,

∴∠AED=∠1+2(∠CAB+ODB)=45°

∴∠AED的度數(shù)為45°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 、1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有數(shù)字1、3、2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結(jié)果;
(2)現(xiàn)制定一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則公平嗎?請用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張的爸爸在上周星期六騎摩托車帶小張和弟弟到離家27千米的游樂園玩耍,爸爸自己騎摩托車的速度為26千米時,由于摩托車后座只能搭乘一人,搭一人的速度為24千米時,當(dāng)天三人同時從家出發(fā),弟弟以4千米時的速度步行,爸爸帶小張騎摩托車行駛一定路程后,小張下車以6千米時的速度步行前往游樂園,爸爸返回接弟弟,接上弟弟后直接去游樂園排隊買票,爸爸花了5分鐘買好票,此時小張也正好到達(dá)、爸爸騎摩托車掉頭和停放摩托車的時間忽略不計問:小張搭乘摩托車的路程為______千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用1來表示的小數(shù)部分,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分又例如:因為,即23,所以的整數(shù)部分為2,小數(shù)部分為(2

請解答:

1的整數(shù)部分是   ,小數(shù)部分是   ;

2)如果的小數(shù)部分為a,的整數(shù)部分為b,求a+b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請你幫小強計算這塊菜地的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線C1:y=x2﹣2a x+2a+2 頂點P在另一個函數(shù)圖象C2
(1)求證:拋物線C1必過定點A(1,3);并用含的a式子表示頂點P的坐標(biāo);
(2)當(dāng)拋物線C1的頂點P達(dá)到最高位置時,求拋物線C1解析式;并判斷是否存在實數(shù)m、n,當(dāng)m≤x≤n時恰有3m≤y≤3n,若存在,求出求m、n的值;若不存在,說明理由;
(3)拋物線C1和圖象C2分別與y軸交于B、C點,當(dāng)△ABC為等腰三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(3)-(-2a)4

(4)272=a6=9b,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2a的等邊三角形ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是( )

A. a
B.a
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系內(nèi)有一點A11),O為坐標(biāo)原點.點Bx軸上,且構(gòu)成的AOB為等腰三角形,則符合條件的點B_______個.

查看答案和解析>>

同步練習(xí)冊答案