【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識(shí)競(jìng)賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上兩圖解答下列問(wèn)題:
(1)該班總?cè)藬?shù)是
(2)根據(jù)計(jì)算,請(qǐng)你補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;
(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫(xiě)出一條你發(fā)現(xiàn)的結(jié)論.

【答案】
(1)40
(2)
(3)答案不唯一,如優(yōu)秀人數(shù)逐漸增多,增大的幅度逐漸減小等.
【解析】解:(1)由題意可得: 該班總?cè)藬?shù)是:22÷55%=40(人);
所以答案是:40;(2)由(1)得,第四次優(yōu)秀的人數(shù)為:40×85%=34(人),
第三次優(yōu)秀率為: ×100%=80%;
如圖所示:
;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)條形統(tǒng)計(jì)圖的理解,了解能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于函數(shù) 的四個(gè)命題:①當(dāng) 時(shí), 有最小值10;② 為任意實(shí)數(shù), 時(shí)的函數(shù)值大于 時(shí)的函數(shù)值;③若 ,且 是整數(shù),當(dāng) 時(shí), 的整數(shù)值有 個(gè);④若函數(shù)圖象過(guò)點(diǎn) ,其中 , ,則 .其中真命題的序號(hào)是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:OA⊥OC,∠AOB:∠AOC=2:3,畫(huà)出圖形,并求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在△ABC中,∠C=90°,AC=5,AB=13.點(diǎn)D在邊AC上,且點(diǎn)D到邊AB和邊BC的距離相等.

(1)用直尺圓規(guī)作出點(diǎn)D(不寫(xiě)作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)D);

(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過(guò)的路徑為 ,則圖中陰影部分的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】母親節(jié)前期,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷(xiāo)售過(guò)程中發(fā)現(xiàn)康乃馨比玫瑰銷(xiāo)售量大,店主決定將玫瑰每枝降價(jià)1元促銷(xiāo),降價(jià)后30元可購(gòu)買(mǎi)玫瑰的數(shù)量是原來(lái)購(gòu)買(mǎi)玫瑰數(shù)量的1.5倍,求降價(jià)后每枝玫瑰的售價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的條件是(

A. B=C,BD=DC B. ADB=ADC,BD=DC

C. B=C,BAD=CAD D. BD=DC,AB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖以正方形ABCDB點(diǎn)為坐標(biāo)原點(diǎn).BC所在直線(xiàn)為x軸,BA所在直線(xiàn)為y軸,建立直角坐標(biāo)系.設(shè)正方形ABCD的邊長(zhǎng)為6,順次連接OA、OBOC、OD的中點(diǎn)A1B1、C1D1,得到正方形A1B1C1D1,再順次連接OA1、OB1OC1、OD1的中點(diǎn)得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n為不小于1的自然數(shù)),設(shè)An點(diǎn)的坐標(biāo)為(xnyn),則xn+yn=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)根據(jù)圖示的對(duì)話(huà)解答下列問(wèn)題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案