【題目】如圖,二次函數(shù)yax2bxc(a≠0)的圖象經(jīng)過點(-1,2),且與x軸交點的橫坐標分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結論:①4a-2bc<0;②2ab<0;③a<-1;④b2+8a>4ac,其中正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】試題解析:由圖知:拋物線的開口向下,則a0;拋物線的對稱軸x=--1,且c0;

①由圖可得:當x=-2時,y0,即4a-2b+c0,故①正確;

②已知x=--1,且a0,所以2a-b0,故②正確;

③已知拋物線經(jīng)過(-12),即a-b+c=21),由圖知:當x=1時,y0,即a+b+c02),

由①知:4a-2b+c03);聯(lián)立(1)(2),得:a+c1;聯(lián)立(1)(3)得:2a-c-4;

3a-3,即a-1;所以③正確;

④由于拋物線的對稱軸大于-1,所以拋物線的頂點縱坐標應該大于2,即:

2,由于a0,所以4ac-b28a,即b2+8a4ac,故④正確;

因此正確的結論是①②③④

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點O是等邊ABC內的任一點,連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點C按順時針方向旋轉60°得ADC.

DAO的度數(shù)是 ;

②用等式表示線段OA,OB,OC之間的數(shù)量關系,并證明;

(2)設AOB=α,BOC=β.

①當α,β滿足什么關系時,OA+OB+OC有最小值?請在圖2中畫出符合條件的圖形,并說明理由;

②若等邊ABC的邊長為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差SOAC﹣SBAD為(
A.36
B.12
C.6
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若∠1=32°30′,則∠1的補角為______°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大家知道|5|=|5-0|,它在數(shù)軸上的意義是表示5的點與原點(即表示0的點)之間的距離.又如式子|6-3|,它在數(shù)軸上的意義是表示6的點與表示3的點之間的距離.則|x-100|+|x-50|+|x+100|的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知10a=5,10b=6,求102a+3b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一副三角尺拼成的圖案

1)則∠EBC的度數(shù)為 _________ 度;

2)將圖1中的三角尺ABC繞點B旋轉到ABBD時,作∠DBC的角平分線BF,直接寫出∠EBF的度數(shù)是 _________ 度;

3)將圖1中的三角尺ABC繞點B旋轉α度(α90°)能否使∠ABE=2DBC?若能,則求出∠EBC的度數(shù);若不能,說明理由.(圖2、圖3供參考)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點P(32a-4)x軸上,則a=______

查看答案和解析>>

同步練習冊答案