【題目】拋物線y=ax2+bx+c(a≠0,a、b、c為常數(shù))上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | …… | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | …… |
y | …… | 4 | 4 | m | 0 | …… |
則下列結(jié)論中:①拋物線的對(duì)稱(chēng)軸為直線x=﹣1;②m=;③當(dāng)﹣4<x<2時(shí),y<0;④方程ax2+bx+c﹣4=0的兩根分別是x1=﹣2,x2=0,其中正確的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
①根據(jù)表格中x與y的對(duì)應(yīng)值和函數(shù)的對(duì)稱(chēng)性,可得出函數(shù)的對(duì)稱(chēng)軸;
②函數(shù)的對(duì)稱(chēng)軸為:x=-1,則m和對(duì)應(yīng),即可求解;
③當(dāng)x=2時(shí)y=0,根據(jù)函數(shù)的對(duì)稱(chēng)性,x=-4,y=0,而當(dāng)-4<x<2時(shí),y>0,即可求解;
④方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+c和y=4的兩圖像的交點(diǎn)的橫坐標(biāo),即可求解.
解:①根據(jù)表格可得,函數(shù)的對(duì)稱(chēng)軸為:x=-1,此時(shí)y=,故①符合題意;
②函數(shù)的對(duì)稱(chēng)軸為:x=-1,則m和對(duì)應(yīng),故②符合題意;
③∵x=2,y=0,∴根據(jù)函數(shù)的對(duì)稱(chēng)性,x=-4,y=0,∴當(dāng)-4<x<2時(shí),y>0,故③不符合題意;
④∵ax2+bx+c-4=0,∴ax2+bx+c=4∴方程ax2+bx+c-4=0的兩根,就是y=ax2+bx+c和y=4的兩圖像的交點(diǎn)的橫坐標(biāo)∴x1=﹣2,x2=0,故④符合題意,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OA⊥弦BC于點(diǎn)H,點(diǎn)D在優(yōu)弧BC上
(1)若∠AOB=50°,求∠ADC的度數(shù);
(2)若BC=8,AH=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程.
(1)求證:無(wú)論取何值,這個(gè)方程總有實(shí)數(shù)根.
(2)若方程的兩根都是正數(shù),求的取值范圍.
(3)以方程的兩根為兩邊,斜邊為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市射擊隊(duì)打算從君君、標(biāo)標(biāo)兩名運(yùn)動(dòng)員中選拔一人參加省射擊比賽,射擊隊(duì)對(duì)兩人的射擊技能進(jìn)行了測(cè)評(píng).在相同的條件下,兩人各打靶5次,成績(jī)統(tǒng)計(jì)如下:
(1)填寫(xiě)下表:
平均數(shù)(環(huán)) | 中位數(shù)(環(huán)) | 方差(環(huán)2) | |
君君 |
| 8 | 0.4 |
標(biāo)標(biāo) | 8 |
|
|
(2)根據(jù)以上信息,若選派一名隊(duì)員參賽,你認(rèn)為應(yīng)選哪名隊(duì)員,并說(shuō)明理由.
(3)如果標(biāo)標(biāo)再射擊1次,命中8環(huán),那么他射擊成績(jī)的方差會(huì) .(填“變大”“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來(lái)測(cè)量操場(chǎng)旗桿AB的高度,他們通過(guò)調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5m,EF=0.25m,目測(cè)點(diǎn)D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )
A. mB. m
C.11.5mD.10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標(biāo)和縱坐標(biāo)得到點(diǎn)M(x1,x2),則稱(chēng)點(diǎn)M為該一元二次方程的衍生點(diǎn).
(1)若方程為x2-2x=0,寫(xiě)出該方程的衍生點(diǎn)M的坐標(biāo).
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點(diǎn)為M,過(guò)點(diǎn)M向x軸和y軸作垂線,兩條垂線與坐標(biāo)軸恰好圍成一個(gè)正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點(diǎn)M始終在直線y=kx-2(k-2)的圖象上,若有請(qǐng)直接寫(xiě)出b,c的值,若沒(méi)有說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=400,BC=600,∠ABC=45°,在△ABC內(nèi)作一個(gè)內(nèi)接矩形DEGF(點(diǎn)E、F在邊BC上,點(diǎn)D、G分別在邊AB和AC上),則矩形DEFG的對(duì)角線EG最短為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com