【題目】已知在平面直角坐標系xOy中,直線y=2x+2和直線y=x+2分別交x軸于點A和點B.則下列直線中,與x軸的交點不在線段AB上的直線是( 。
A.y=x+2B.y=x+2C.y=4x+2D.y=x+2
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC和△DCE都是等邊三角形.
探究發(fā)現
(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.
拓展運用
(2)若B、C、E三點不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.
(3)若B、C、E三點在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經過點A(3,0)和點B(2,3),過點A的直線與y軸的負半軸相交于點C,且tan∠CAO=.
(1)求這條拋物線的表達式及對稱軸;
(2)聯結AB、BC,求∠ABC的正切值;
(3)若點D在x軸下方的對稱軸上,當S△DBC=S△ADC時,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線交x軸于A、B兩點,其中點A坐標為,與y軸交于點C,且對稱軸在y軸的左側,拋物線的頂點為P.
(1)當時,求拋物線的頂點坐標;
(2)當時,求b的值;
(3)在(1)的條件下,點Q為x軸下方拋物線上任意一點,點D是拋物線對稱軸與x軸的交點,直線、分別交拋物線的對稱軸于點M、N.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果商計劃購進甲、乙兩種水果進行銷售,經了解,甲種水果的進價比乙種水果的進價每千克少4元,且用800元購進甲種水果的數量與用1000元購進乙種水果的數量相同.
(1)求甲、乙兩種水果的單價分別是多少元?
(2)該水果商根據該水果店平常的銷售情況確定,購進兩種水果共200千克,其中甲種水果的數量不超過乙種水果數量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價定為每千克20元,乙種水果的銷售價定為每千克25元,則水果商應如何進貨,才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生對網上在線學習效果的滿意度,某校設置了:非常滿意、滿意、基本滿意、不滿意四個選項,隨機抽查了部分學生,要求每名學生都只選其中的一項,并將抽查結果繪制成如圖統(tǒng)計圖(不完整).
請根據圖中信息解答下列問題:
(1)求被抽查的學生人數,并補全條形統(tǒng)計圖;(溫馨提示:請畫在答題卷相對應的圖上)
(2)求扇形統(tǒng)計圖中表示“滿意”的扇形的圓心角度數;
(3)若該校共有1000名學生參與網上在線學習,根據抽查結果,試估計該校對學習效果的滿意度是“非常滿意”或“滿意”的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D在AC上,點E在BA的延長線上,且CD=AE過點A作AF⊥CE,垂足為F,過點D作BC的平行線,交AB于點G,交FA的延長線于點H.
(1)求證∠ACE=∠BAH;
(2)在圖中找出與CE相等的線段,并證明;
(3)若GH=DH,求的值(用含的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,直線x+6與y軸交于點A,與x軸交于點D,直線AB交x軸于點B,將△AOB沿直線AB折疊,點O恰好落在直線AD上的點C處.
(1)求OB的長;
(2)如圖2,F,G是直線AB上的兩點,若△DFG是以FG為斜邊的等腰直角三角形,求點F的坐標;
(3)如圖3,點P是直線AB上一點,點Q是直線AD上一點,且P,Q均在第四象限,點E是x軸上一點,若四邊形PQDE為菱形,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點D,E,F分別在AB,BC,AC邊上,DE∥AC,EF∥AB.
(1)求證:△BDE∽△EFC.
(2)設,
①若BC=12,求線段BE的長;
②若△EFC的面積是20,求△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com