【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于點G,交BE于點H,下面說法正確的是( )
① △ABE的面積與△BCE的面積相等;② ∠AFG=∠AGF;③ ∠FAG=2∠ACF;④ BH=CH
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
【答案】A
【解析】根據(jù)三角形中線的性質可得:△ABE的面積和△BCE的面積相等,故①正確,
因為∠BAC=90°,所以∠AFG+∠ACF=90°,因為AD是高,所以∠DGC+∠DCG=90°,
因為CF是角平分線,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因為∠DGC=∠AGF,所以
∠AFG=∠AGF,故②正確,
因為∠FAG+∠ABC=90°, ∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因為CF是角平分線,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正確,
④假設BH=CH, ∠ACB=30°,則∠HBC=∠HCB =15°, ∠ABC=60°,
所以∠ABE=60°-15°=45°,因為∠BAC=90°,所以AB=AE,因為AE=EC,所以AB=,這與在直角三角形中30°所對直角邊等于斜邊的一半相矛盾,所以假設不成立,故④不一定正確,
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB=,AB=1,把△ABO繞點O旋轉150°后得到△A1B1O,則點A1的坐標為( )
A.(﹣1,-)
B.(﹣1,-)或(﹣2,0)
C.(-,﹣1)或(0,﹣2)
D.(-,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,圖②是邊長為m-n的正方形.
(1)請用圖①中四個小長方形和圖②中的正方形拼成一個大正方形,畫出示意圖(要求連接處既沒有重疊,也沒有空隙);
(2)請用兩種不同的方法列代數(shù)式表示(1)中拼得的大正方形的面積;
(3)請直接寫出(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關系;
(4)根據(jù)(4)中的等量關系,解決如下問題:若a+b=6,ab=4,求(a-b)2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.
(1)求證:AD平分∠BAC;
(2)猜想寫出AB+AC與AE之間的數(shù)量關系并給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠BAC=90°,AD⊥BC于D,則下列結論中,正確的個數(shù)為( ). ①AB⊥AC; ②AD與AC互相垂直; ③點C到AB的垂線段是線段AB; ④點D到BC的距離是線段AD的長度; ⑤線段AB的長度是點B到AC的距離; ⑥線段AB是點B到AC的距離; ⑦AD>BD.
A.2個
B.4個
C.7個
D.0個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動點(點D與點B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關系嗎?并證明你發(fā)現(xiàn)的結論;
(2)類比猜想:如圖②,當動點D運動至等邊△ABC邊BA的延長線時,其他作法與(1)相同,猜想AF與BD在(1)中的結論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當動點D在等邊△ABC邊BA上運動時(點D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關系?并證明你的探究的結論;Ⅱ.如圖④,當動點D在等邊△ABC的邊BA的延長線上運動時,其他作法與圖③相同,Ⅰ中的結論是否成立?若不成立,是否有新的結論?并證明你得出的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,
(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;② .
(2)如果∠AOD=40°,則①∠BOC=;②OP是∠BOC的平分線,所以∠COP=度;③求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2x+3與軸交于A、B兩點,與y軸交于點C,點D為拋物線的頂點.
(1)求直線AC的解析式,并直接寫出D點的坐標.
(2)如圖1,在直線AC的上方拋物線上有一動點P,過P點作PQ垂直于x軸交AC于點Q,PM∥BD交AC于點M.
①求△PQM周長最大值;
②當△PQM周長取得最大值時,PQ與x軸交點為H,首位順次連接P、H、O、D構成四邊形,它的周長為L,若線段OH在x軸上移動,求L最小值時OH移動的距離及L的最小值.
(3)如圖2,連接BD與y軸于點F,將△BOF繞點O逆時針旋轉,記旋轉后的三角形為△BOF′,B′F′所在直線與直線AC、直線OC分別交于點G、K,當△CGK為直角三角形時,直接寫出線段BG的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com