【題目】已知二次函數(shù)y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四個(gè)命題,則一定正確命題的序號(hào)是( )

①x=1是二次方程ax2+bx+c=0的一個(gè)實(shí)數(shù)根;

②二次函數(shù)y=ax2+bx+c的開(kāi)口向下;

③二次函數(shù)y=ax2+bx+c的對(duì)稱軸在y軸的左側(cè);

④不等式4a+2b+c>0一定成立.

A. ①② B. ①③ C. ①④ D. ③④

【答案】C

【解析】試題分析:當(dāng)x=1時(shí),a+b+c=0,因此可知二次方程ax2+bx+c=0的一個(gè)實(shí)數(shù)根,故①正確;根據(jù)a>b>c,且a+b+c=0,可知a>0,函數(shù)的開(kāi)口向上,故②不正確;

根據(jù)二次函數(shù)的對(duì)稱軸為x=-,可知無(wú)法判斷對(duì)稱軸的位置,故③不正確;

根據(jù)其圖像開(kāi)口向上,且當(dāng)x=2時(shí),4a+2b+c>a+b+c=0,故不等式4a+2b+c>0一定成立故④正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的每個(gè)內(nèi)角都是150°,這個(gè)多邊形是 ( )

A. 八邊形B. 十邊形C. 十二邊形D. 十四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形具有而矩形不一定具有的性質(zhì)是(
A.對(duì)角線互相垂直
B.對(duì)角線相等
C.對(duì)角線互相平分
D.對(duì)角互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號(hào).已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測(cè)點(diǎn)D,測(cè)得船C正好在觀測(cè)點(diǎn)D的南偏東75°方向上.

(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號(hào),請(qǐng)保留根號(hào)).

(2)已知距離觀測(cè)點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營(yíng)救船C,在去營(yíng)救的途中有無(wú)觸礁的危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店王阿姨到水果批發(fā)市場(chǎng)打算購(gòu)進(jìn)一種水果銷(xiāo)售,經(jīng)過(guò)還價(jià),實(shí)際價(jià)格每千克比原來(lái)少2元,發(fā)現(xiàn)原來(lái)買(mǎi)這種80千克的錢(qián),現(xiàn)在可買(mǎi)88千克。

(1)現(xiàn)在實(shí)際這種每千克多少元?

(2)準(zhǔn)備這種,若這種的量y(千克)與單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系。

求y與x之間的函數(shù)關(guān)系式;

請(qǐng)你幫拿個(gè)主意,將這種的單價(jià)定為多少時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)是多少?(利潤(rùn)=收入-進(jìn)貨金額)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的價(jià)格標(biāo)簽已丟失,售貨員只知道它的進(jìn)價(jià)為80元,打七折出售后,仍可獲利5你認(rèn)為售貨員應(yīng)標(biāo)在標(biāo)簽上的價(jià)格為(

A. 110B. 120C. 130D. 140

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將拋物線y2x12+1先向左平移2個(gè)單位,再向上平移3個(gè)單位,則平移后拋物線的表達(dá)式是( 。

A.y2x+12+4B.y2x12+4

C.y2x+22+4D.y2x32+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車(chē),經(jīng)市場(chǎng)調(diào)查知,購(gòu)買(mǎi)3量男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需16000元.

(1)求男式單車(chē)和女式單車(chē)的單價(jià);

(2)該社區(qū)要求男式單比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,AC=6,BD=8.動(dòng)點(diǎn)E從點(diǎn)B出發(fā),沿著B(niǎo)﹣A﹣D在菱形ABCD的邊上運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D停止.點(diǎn)F是點(diǎn)E關(guān)于BD的對(duì)稱點(diǎn),EF交BD于點(diǎn)P,若BP=x,△OEF的面積為y,則y與x之間的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案