精英家教網(wǎng)已知兩直線l1,l2分別經(jīng)過(guò)點(diǎn)A(1,0),點(diǎn)B(-3,0),并且當(dāng)兩直線同時(shí)相交于y正半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l1交于點(diǎn)K,如圖所示.
(1)求點(diǎn)C的坐標(biāo),并求出拋物線的函數(shù)解析式;
(2)拋物線的對(duì)稱軸被直線l1,拋物線,直線l2和x軸依次截得三條線段,問(wèn)這三條線段有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)當(dāng)直線l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線的另一個(gè)交點(diǎn)為M,請(qǐng)找出使△MCK為等腰三角形的點(diǎn)M,簡(jiǎn)述理由,并寫出點(diǎn)M的坐標(biāo).
分析:(1)利用△BOC∽△COA,得出C點(diǎn)坐標(biāo),再利用待定系數(shù)法求出二次函數(shù)解析式即可;
(2)可求得直線l1的解析式為y=-
3
x+
3
,直線l2的解析式為y=
3
3
x+
3
,進(jìn)而得出D,E,F(xiàn)點(diǎn)的坐標(biāo)即可得出,三條線段數(shù)量關(guān)系;
(3)利用等邊三角形的判定方法得出△ABK為正三角形,以及易知△KDC為等腰三角形,進(jìn)而得出△MCK為等腰三角形時(shí)M點(diǎn)坐標(biāo).
解答:精英家教網(wǎng)解:(1)解法1:∵l1⊥l2,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
又∠ACO+∠CAO=90°,
∴∠BCO=∠CAO,又∠COA=∠BOC=90°
∴△BOC∽△COA,
CO
BO
=
AO
CO
,
CO
3
=
1
CO
,
CO=
3
,
∴點(diǎn)C的坐標(biāo)是(0,
3
),
由題意,可設(shè)拋物線的函數(shù)解析式為y=ax2+bx+
3
,
把A(1,0),B(-3,0)的坐標(biāo)分別代入y=ax2+bx+
3
,
a+b+
3
=0
9a-3b+
3
=0

解這個(gè)方程組,得
a=-
3
3
b=-
2
3
3
,
∴拋物線的函數(shù)解析式為y=-
3
3
x2-
2
3
3
x+
3


解法2:由勾股定理,得(OC2+OB2)+(OC2+OA2)=BC2+AC2=AB2,
又∵OB=3,OA=1,AB=4,
OC=
3
,
∴點(diǎn)C的坐標(biāo)是(0,
3
),
由題意可設(shè)拋物線的函數(shù)解析式為y=a(x-1)(x+3),把C(0,
3
)代入
函數(shù)解析式得a=-
3
3
,
所以,拋物線的函數(shù)解析式為y=-
3
3
(x-1)(x+3)
=-
3
3
x2-
2
3
3
x+
3


(2)解法1:截得三條線段的數(shù)量關(guān)系為KD=DE=EF.
理由如下:
設(shè)直線l1的解析式為y=kx+b,把A(1,0),C(0,
3
),代入解析式,
解得k=-
3
,b=
3

所以直線l1的解析式為y=-
3
x+
3
,
同理可得直線l2的解析式為y=
3
3
x+
3

拋物線的對(duì)稱軸為直線x=-1,
由此可求得點(diǎn)K的坐標(biāo)為(-1,2
3
),
點(diǎn)D的坐標(biāo)為(-1,
4
3
3
),點(diǎn)E的坐標(biāo)為(-1,
2
3
3
),點(diǎn)F的坐標(biāo)為(-1,0),
∴KD=
2
3
3
,DE=
2
3
3
,EF=
2
3
3

∴KD=DE=EF.

解法2:截得三條線段的數(shù)量關(guān)系為KD=DE=EF,
理由如下:
由題意可知Rt△ABC中,∠ABC=30°,∠CAB=60°,
則可得EF=BF×tan30°=
2
3
3
,KF=AF×tan60°=2
3

由頂點(diǎn)D坐標(biāo)(-1,
4
3
3
)得DF=
4
3
3

∴KD=DE=EF=
2
3
3
;
精英家教網(wǎng)
(3)當(dāng)點(diǎn)M的坐標(biāo)分別為(-2,
3
),(-1,
4
3
3
)時(shí),△MCK為等腰三角形.
理由如下:
(i)連接BK,交拋物線于點(diǎn)G,
∵F(-1,0),直線l1的解析式為y=-
3
x+
3

∴K(-1,2
3
),
∵B(-3,0),
∴直線BK的解析式為:y=
3
x+3
3
①,
∵拋物線的函數(shù)解析式為y═-
3
3
x2-
2
3
3
x+
3
②;
①②聯(lián)立即可求出點(diǎn)G的坐標(biāo)為(-2,
3
),
又∵點(diǎn)C的坐標(biāo)為(0,
3
),則GC∥AB,
∵可求得AB=BK=4,且∠ABK=60°,即△ABK為正三角形,
∴△CGK為正三角形
∴當(dāng)l2與拋物線交于點(diǎn)G,即l2∥AB時(shí),符合題意,此時(shí)點(diǎn)M1的坐標(biāo)為(-2,
3
),
(ii)連接CD,由KD=
2
3
3
,CK=CG=2,∠CKD=30°,易知△KDC為等腰三角形,
∴當(dāng)l2過(guò)拋物線頂點(diǎn)D時(shí),符合題意,此時(shí)點(diǎn)M2坐標(biāo)為(-1,
4
3
3
),
(iii)當(dāng)點(diǎn)M在拋物線對(duì)稱軸右邊時(shí),只有點(diǎn)M與點(diǎn)A重合時(shí),滿足CM=CK,
但點(diǎn)A、C、K在同一直線上,不能構(gòu)成三角形,
綜上所述,當(dāng)點(diǎn)M的坐標(biāo)分別為(-2,
3
),(-1,
4
3
3
)時(shí),△MCK為等腰三角形.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用以及相似三角形的應(yīng)用,二次函數(shù)的綜合應(yīng)用是初中階段的重點(diǎn)題型,特別注意利用數(shù)形結(jié)合是這部分考查的重點(diǎn)也是難點(diǎn),同學(xué)們應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知兩直線l1和l2相交于點(diǎn)A(2,1),且直線l2經(jīng)過(guò)坐標(biāo)原點(diǎn),若OA=OB
(1)求l1和l2的函數(shù)關(guān)系式;
(2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線L1和L2,直線L1的解析式是y=x+4,且直線L1與x軸交于點(diǎn)C,直線L2經(jīng)過(guò)A,精英家教網(wǎng)B兩點(diǎn),兩直線相交于點(diǎn)A.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線L2的解析式;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線l1,l2分別經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)B(-1,0),并且當(dāng)兩直線同時(shí)相交于y負(fù)半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l2交于點(diǎn)D,如圖所示.
(1)求證:△AOC∽△COB;
(2)求出拋物線的函數(shù)解析式;
(3)當(dāng)直線l1繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<90°)時(shí),它與拋物線的另一個(gè)交點(diǎn)為P(x,y),求四邊形APCB面積S關(guān)于x的函數(shù)解析式,并求S的最大值;
(4)當(dāng)直線l1繞點(diǎn)C旋轉(zhuǎn)時(shí),它與拋物線的另一個(gè)交點(diǎn)為E,請(qǐng)找出使△ECD為等腰三角形的點(diǎn)E,并求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•成華區(qū)一模)已知兩直線l1、l2分別經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)B(-1,0),并且當(dāng)兩條直線同時(shí)相交于y軸負(fù)半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的對(duì)稱軸與直線l2交于點(diǎn)K,如圖所示.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形的面積等于△ABC的面積的
32
倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)將直線l1按順時(shí)針?lè)较蚶@點(diǎn)C旋轉(zhuǎn)α°(0<α<90),與拋物線的另一個(gè)交點(diǎn)為M.求在旋轉(zhuǎn)過(guò)程中△MCK為等腰三角形時(shí)的α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線L1和L2,直線L1的解析式是y=x-4,且直線L1與x軸交于點(diǎn)C,直線L2經(jīng)過(guò)A、B兩點(diǎn),兩直線相交于點(diǎn)A.
(1)求直線L2的解析式:
(2)根據(jù)圖象可得,當(dāng)x
>0
>0
時(shí),直線L1對(duì)應(yīng)的函數(shù)值大于直線L2對(duì)應(yīng)的函數(shù)值;
(3)△ABC的面積為
12
12

查看答案和解析>>

同步練習(xí)冊(cè)答案