【題目】為了解學生參加戶外活動的情況,和諧中學對學生每天參加戶外活動的時間進行抽樣調查,并將調查結果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:

(1)被抽樣調查的學生有______,并補全條形統(tǒng)計圖;

(2)每天戶外活動時間的中位數(shù)是______(小時)

(3)該校共有2000名學生,請估計該校每天戶外活動時間超過1小時的學生有多少人?

【答案】1500;(21;(3)該校每天戶外活動時間超過1小時的學生有800人.

【解析】

1)根據(jù)條形統(tǒng)計圖和扇形統(tǒng)計圖可以求得被調查學生總數(shù)和1.5小時的學生數(shù),從而可以將條形統(tǒng)計圖補充完整;

2)根據(jù)條形統(tǒng)計圖可以得到這組數(shù)據(jù)的中位數(shù);

3)根據(jù)條形統(tǒng)計圖可以求得校共有1850名學生,該校每天戶外活動時間超過1小時的學生有多少人.

(1)0.5小時的有100人占被調查總人數(shù)的20%,

被調查的人數(shù)有:

1.5小時的人數(shù)有:

補全的條形統(tǒng)計圖如下圖所示,

(2)(1)可知被調查學生500,由條形統(tǒng)計圖可得,中位數(shù)是1小時,

(3)由題意可得,

該校每天戶外活動時間超過1小時的學生數(shù)為:(人),

即該校每天戶外活動時間超過1小時的學生有800人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(a2-4a+2)(a2-4a+6)+4進行因式分解的過程:

解:設a2-4a=y(tǒng),則

原式=(y+2)(y+6)+4(第一步)

=y(tǒng)2+8y+16(第二步)

=(y+4)2(第三步)

=(a2-4a+4)2.(第四步)

(1)該同學因式分解的結果是否徹底:________(徹底不徹底”);

(2)若不徹底,請你直接寫出因式分解的最后結果:________;

(3)請你模仿以上方法對多項式(x2-2x)(x2-2x+2)+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線PC交O于A,C兩點,AB是O的直徑,AD平分PAB交O于點D,過D作DE垂直PA,垂足為E.

(1)求證:DE是⊙O的切線;

(2)若AE=1,AC=4,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,拋物線y=ax2+bx+2x軸交于A(﹣1,0),B(4,0)兩點,與y軸交于點C,連接AC,BC.D為坐標平面第四象限內一點,且使得△ABD△ABC全等.

(1)求拋物線的表達式.

(2)請直接寫出點D的坐標,并判斷四邊形ACBD的形狀.

(3)如圖2,將△ABD沿y軸的正方形以每秒1個單位長度的速度平移,得到△A′B′D′,A′B′BC交于點E,A′D′AB交于點F.連接EF,AB′,EFAB′交于點G.設運動的時間為t(0≤t≤2)秒.

當直線EF經(jīng)過拋物線的頂點T時,請求出此時t的值;

請直接寫出點G經(jīng)過的路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,點EBC上,以CE為直徑的⊙OAB于點F,AO∥EF

(1)求證:AB⊙O的切線;

(2)如圖2,連結CFAO于點G,交AE于點P,若BE=2,BF=4,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)學活動課上,小麗為了測量校園內旗桿AB的高度,站在教學樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學樓的距離BD=9m,請你幫她求出旗桿的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù) y kx b 的圖象與 x 軸交點為 A3, 0,與 y 軸交點為 B ,且與正比例函數(shù)的圖象交于點Cm,4.

1)求點C 的坐標;

2)求一次函數(shù) y kx b 的表達式;

3)若點 P y 軸上一點,且BPC 的面積為 6,請直接寫出點 P 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張紙片上分別寫有如下四個等式中的一個等式:

AB=DC,②∠ABE=DCE, AE=DE,④∠A=D.

小明同學閉上眼睛從四張紙片中隨機抽取一張,再從剩下的紙片中隨機抽取另一張.請結合圖形解答下列兩個問題:

(1)當抽得①和②時,用①,②作為條件能判定△BEC是等腰三角形嗎?說說你的理由;

(2)請你用樹狀圖或表格表示抽取兩張紙片上的等式所有可能出現(xiàn)的結果(用序號表示),并求以已經(jīng)抽取的兩張紙片上的等式為條件,使△BEC不能構成等腰三角形的概率.

查看答案和解析>>

同步練習冊答案