【題目】如圖,在數(shù)學活動課中,小敏為了測量校園內旗桿CD的高度,先在教學樓的底端A點處,觀測到旗桿頂端C的仰角∠CAD=60°,然后爬到教學樓上的B處,觀測到旗桿底端D的俯角是30°,已知教學樓AB高4米.
(1)求教學樓與旗桿的水平距離AD;(結果保留根號)
(2)求旗桿CD的高度.

【答案】
(1)

解:∵教學樓B點處觀測到旗桿底端D的俯角是30°,

∴∠ADB=30°,

在Rt△ABD中,∠BAD=90°,∠ADB=30°,AB=4m,

∴AD= = =4 (m),

答:教學樓與旗桿的水平距離是4 m.


(2)

解:∵在Rt△ACD中,∠ADC=90°,∠CAD=60°,AD=4 m,

∴CD=ADtan60°=4 × =12(m),

答:旗桿CD的高度是12m.


【解析】(1)根據(jù)題意得出∠ADB=30°,進而利用銳角三角函數(shù)關系得出AD的長;
    (2)利用(1)中所求,結合CD=ADtan60°求出答案.此題主要考查了解直角三角的應用,正確應用銳角三角函數(shù)關系是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB的解析式為y=2x+4,交x軸于點A,交y軸于點B,以A為頂點的拋物線交直線AB于點D,交y軸負半軸于點C(0,﹣4).

(1)求拋物線的解析式;
(2)將拋物線頂點沿著直線AB平移,此時頂點記為E,與y軸的交點記為F,
①求當△BEF與△BAO相似時,E點坐標;
②記平移后拋物線與AB另一個交點為G,則SEFG與SACD是否存在8倍的關系?若有請直接寫出F點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算,正確的是( )
A.(﹣2)2=4
B.
C.46÷(﹣2)6=64
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要在寬為22米的九州大道兩邊安裝路燈,路燈的燈臂CD長2米,且與燈柱BC成120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應該設計為( 。

A.(11﹣2)米
B.(11﹣2)米
C.(11﹣2)米
D.(11﹣4)米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華同學自制了一個簡易的幻燈機,其工作情況如圖所示,幻燈片與屏幕平行,光源到幻燈片的距離是30cm幻燈片到屏幕的距離是1.5m,幻燈片上小樹的高度是10cm,則屏幕上小樹的高度是( )

A.50cm
B.500cm
C.60 cm
D.600cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,已知DE∥BC.
(1)△ADE與△ABC相似嗎?為什么?
(2)它們是位似圖形嗎?如果是,請指出位似中心.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列4組條件中,能判定△ABC∽△DEF的是( 。
A.AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°
B.∠A=45°,∠B=55°;∠D=45°,∠F=75°
C.BC=4,AC=6,AB=9;DE=18,EF=8,DF=12
D.AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為( )

A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習冊答案