【題目】某水果積極計(jì)劃裝運(yùn)甲、乙、丙三種水果到外地銷(xiāo)售(每輛汽車(chē)規(guī)定滿載,并且只裝一種水果).如表為裝運(yùn)甲、乙、丙三種水果的重量及利潤(rùn).
(1)用8輛汽車(chē)裝運(yùn)乙、丙兩種水果共22噸到A地銷(xiāo)售,問(wèn)裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?
(2)水果基地計(jì)劃用20輛汽車(chē)裝運(yùn)甲、乙、丙三種水果共72噸到B地銷(xiāo)售(每種水果不少于一車(chē)),假設(shè)裝運(yùn)甲水果的汽車(chē)為m輛,則裝運(yùn)乙、丙兩種水果的汽車(chē)各多少輛?(結(jié)果用m表示)
(3)在(2)問(wèn)的基礎(chǔ)上,如何安排裝運(yùn)可使水果基地獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】(1)裝運(yùn)乙種水果的車(chē)有2輛、丙種水果的汽車(chē)有6輛;(2)裝運(yùn)乙種水果的汽車(chē)是(m﹣12)輛,丙種水果的汽車(chē)是(32﹣2m)輛;(3)當(dāng)運(yùn)甲水果的車(chē)15輛,運(yùn)乙水果的車(chē)3輛,運(yùn)丙水果的車(chē)2輛,利潤(rùn)最大,最大利潤(rùn)為366元.
【解析】(1)設(shè)裝運(yùn)乙、丙水果的車(chē)分別為x輛,y輛,得:,解得:.
答:裝運(yùn)乙種水果的車(chē)有2輛、丙種水果的汽車(chē)有6輛.
(2)設(shè)裝運(yùn)乙、丙水果的車(chē)分別為a輛,b輛,得:,解得:.
答:裝運(yùn)乙種水果的汽車(chē)是(m﹣12)輛,丙種水果的汽車(chē)是(32﹣2m)輛.
(3)設(shè)總利潤(rùn)為w千元,w=4×5m+2×7(m﹣12)=4×3(32﹣2m)=10m+216.
∵,∴13≤m≤15.5,∵m為正整數(shù),∴m=13,14,15,在w=10m+216中,w隨x的增大而增大,∴當(dāng)m=15時(shí),W最大=366(千元).
答:當(dāng)運(yùn)甲水果的車(chē)15輛,運(yùn)乙水果的車(chē)3輛,運(yùn)丙水果的車(chē)2輛,利潤(rùn)最大,最大利潤(rùn)為366元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中不能用平方差公式進(jìn)行因式分解的是( 。
A. 1-a4 B. -16a2+b2 C. -m4-n4 D. 9a2-b4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:
(1)請(qǐng)問(wèn)采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好的保護(hù)美麗圖畫(huà)的邛海濕地,西昌市污水處理廠決定先購(gòu)買(mǎi)A、B兩型污水處理設(shè)備共20臺(tái),對(duì)邛海濕地周邊污水進(jìn)行處理,每臺(tái)A型污水處理設(shè)備12萬(wàn)元,每臺(tái)B型污水處理設(shè)備10萬(wàn)元.已知1臺(tái)A型污水處理設(shè)備和2臺(tái)B型污水處理設(shè)備每周可以處理污水640噸,2臺(tái)A型污水處理設(shè)備和3臺(tái)B型污水處理設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少?lài)崳?/span>
(2)經(jīng)預(yù)算,市污水處理廠購(gòu)買(mǎi)設(shè)備的資金不超過(guò)230萬(wàn)元,每周處理污水的量不低于4500噸,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列證明過(guò)程. 如圖,在△ABC中,∠B=∠C,D、E、F分別在AB、BC、AC上,且BD=CE,∠DEF=∠B,說(shuō)明ED=EF.
解:∵∠DEC=∠B+∠BDE (),
又∵∠DEF=∠B(已知),
∴∠=∠(等式性質(zhì)).
在△EBD與△FCE中,
∠=∠(已證),
=(已知),
∠B=∠C(已知),
∴△EBD≌△FCE().
∴ED=EF ().
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如圖1,在△ABC中,BD平分∠ABC,CD平分∠ACB.過(guò)D作EF∥BC交AB于E,交AC于F,請(qǐng)說(shuō)明EF=BE+CF的理由.
(2)如圖2,BD平分∠ABC,CD是△ABC中∠ACB的外角平分線,若仍然過(guò)點(diǎn)D作EF∥BC交AB于E,交AC于F,第(1)題的結(jié)論還成立嗎?如果成立,請(qǐng)說(shuō)明理由;如果不成立,你能否找到EF與BE、CF之間類(lèi)似的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校規(guī)劃在一塊長(zhǎng)AD為18m,寬AB為13m的長(zhǎng)方形場(chǎng)地ABCD上,設(shè)計(jì)分別與AD,AB平行的橫向通道和縱向通道,其余部分鋪上草皮.
(1)如圖1,若設(shè)計(jì)三條通道,一條橫向,兩條縱向,且它們的寬度相等,其余六塊草坪相同,其中一塊草坪兩邊之比AM:AN=8:9,問(wèn)通道的寬是多少?
(2)為了建造花壇,要修改(1)中的方案,如圖2,將三條通道改為兩條通道,縱向的寬度改為橫向?qū)挾鹊?/span>2倍,其余四塊草坪相同,且每一塊草坪均有一邊長(zhǎng)為8m,這樣能在這些草坪建造花壇.如圖3,在草坪RPCQ中,已知RE⊥PQ于點(diǎn)E,CF⊥PQ于點(diǎn)F,求花壇RECF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下4個(gè)命題:①兩條對(duì)角線互相平分的四邊形是平行四邊形;②兩條對(duì)角線互相垂直的四邊形是正方形;③兩條對(duì)角線相等的四邊形是菱形;④兩條對(duì)角線相等且互相垂直的四邊形是正方形.其中正確命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組圖形一定相似的是( )。
A.任意兩個(gè)平行四邊形B.任意兩個(gè)矩形
C.任意兩個(gè)菱形D.任意兩個(gè)正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com