【題目】某商店經(jīng)銷的一種進價為每件元的運動休閑杉熱銷.據(jù)市場調(diào)查分析,若每件按元銷售出件;銷售單價每漲價元,月銷售量就減少件.針對這種運動休閑杉的銷售情況,請解答以下問題:

設銷售單價為每件元,月銷售利潤為元,求之間的函數(shù)關系式(不必寫出的取值范圍);

商店想使月銷售利潤達到元,并使銷售量盡量大,請問該休閑杉的銷售單價應定為多少元?

【答案】(1)y=-10x2+1400x-40000;(2)銷售單價應定為元.

【解析】

(1)根據(jù)“銷售單價每漲1元,月銷售量就減少10件”,可知:月銷售量=500-(銷售單價-50)×10,然后根據(jù)月銷售利潤=每件的利潤×銷售的數(shù)量即可求出yx之間的函數(shù)關系式;

(2)將y=8000代入(1)中所求的函數(shù)關系式,得到關于x的方程,解方程即可.

解:(1)當銷售單價定為每千克x元時,月銷售量為:[500-(x-50)×10]件.

每件的銷售利潤是:(x-40)元,

所以月銷售利潤為:y=(x-40)[500-(x-50)×10]=(x-40)(1000-10x)=-10x2+1400x-40000,

∴yx的函數(shù)解析式為:y=-10x2+1400x-40000;

(2)由題意得-10x2+1400x-40000=8000,

解得x1=60,x2=80.

因為要使使銷售量盡量大,所以只能取x=60,

答:銷售單價應定為60.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在扇形OAB中,∠AOB=110°,半徑OA=18,將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上的點D處,折痕交OA于點C,則弧AD的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A3,0),B0,﹣1),連接AB,過點B的垂線BC,使BCBA,則點C坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線,有以下結(jié)論:①;;.其中正確的結(jié)論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于、兩點,點軸的負半軸,點軸的正半軸,與軸交于點,且,.則下列判斷中正確的是( )

A. 此拋物線的解析式為

B. 時,隨著的增大而增大

C. 此拋物線與直線只有一個交點

D. 在此拋物線上的某點,使的面積等于,這樣的點共有三個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點Dmm+8)在第二象限,點B0,n)在y軸正半軸上,作DAx軸,垂足為A,已知OAOB的值大2,四邊形AOBD的面積為12

1)求mn的值.

2)如圖2CAO的中點,DCAB相交于點E,AFBD,垂足為F,求證:AFDE

3)如圖3,點G在射線AD上,且GAGB,HGB延長線上一點,作∠HANy軸于點N,且∠HAN=∠HBO,求NBHB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019312日是第41個植樹節(jié),某單位積極開展植樹活動,決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數(shù)與用680元購買乙種樹苗的棵數(shù)相同,乙種樹苗每棵比甲種樹苗每棵少6元.

1)求甲種樹苗每棵多少元?

2)若準備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A3,m),B﹣2﹣3)是直線AB和某反比例函數(shù)的圖象的兩個交點.

1)求直線AB和反比例函數(shù)的解析式;

2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;

3)反比例函數(shù)的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為( 。

A. 2 B. ﹣2 C. 4 D. ﹣4

查看答案和解析>>

同步練習冊答案