【題目】如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( )
A.40°
B.45°
C.50°
D.55°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=﹣2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2 . 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 例如:當(dāng)x=1時,y1=0,y2=4,y1<y2 , 此時M=0.下列判斷:
①當(dāng)x>0時,y1>y2;
②當(dāng)x<0時,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是﹣ 或 .
其中正確的是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,點A、B的坐標(biāo)分別是A(3,2),B(1,3),△AOB繞點O逆時針旋轉(zhuǎn)90°后得到△A1OB1 .
(1)點A關(guān)于點O中心對稱的點P的坐標(biāo)為;
(2)在網(wǎng)格內(nèi)畫出△A1OB1;
(3)點A1、B1的坐標(biāo)分別為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標(biāo)為(4,6).雙曲線y= (x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.
(1)求k的值及點E的坐標(biāo);
(2)若點F是邊上一點,且△BCF∽△EBD,求直線FB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點A在x軸的正半軸,點C在y軸的正半軸.拋物線y= x2﹣ x+4經(jīng)過點B,C,連接OB,D是OB上的動點,過D作DE∥OA交拋物線于點E(在對稱軸右側(cè)),過E作EF⊥OB于F,以ED,EF為鄰邊構(gòu)造DEFG,則DEFG周長的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1 , 與x軸的另一個交點為A1 .
(1)當(dāng)a=﹣1,b=1時,求拋物線n的解析式;
(2)四邊形AC1A1C是什么特殊四邊形,請寫出結(jié)果并說明理由;
(3)若四邊形AC1A1C為矩形,請求出a,b應(yīng)滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以AB為直徑的圓,C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點F,連結(jié)CA,CB.
(1)求證:AC平分∠DAB;
(2)若⊙O的半徑為5,且tan∠DAC= ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC上的點,且滿足AC=DC=DE=BE=1,則tanA= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進(jìn)一批A型車和B型車共60輛,A型車的進(jìn)貨價為每輛1100元,銷售價與(1)相同;B型車的進(jìn)貨價為每輛1400元,銷售價為每輛2000元,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com