【題目】浠水縣商場某柜臺銷售每臺進(jìn)價分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進(jìn)價、售價均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風(fēng)扇能否實(shí)現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
【答案】
(1)解:設(shè)A型電風(fēng)扇單價為x元,B型單價y元,則
,解得: ,
答:A型電風(fēng)扇單價為200元,B型單價150元
(2)解:設(shè)A型電風(fēng)扇采購a臺,則
160a+120(50﹣a)≤7500,
解得:a≤ ,
則最多能采購37臺
(3)解:依題意,得:
(200﹣160)a+(150﹣120)(50﹣a)>1850,
解得:a>35,
則35<a≤ ,
∵a是正整數(shù),
∴a=36或37,
方案一:采購A型36臺B型14臺;
方案二:采購A型37臺B型13臺
【解析】(1)設(shè)A、B兩種型號電風(fēng)扇的銷售單價分別為x元、y元,根據(jù)3臺A型號4臺B型號的電扇收入1200元,5臺A型號6臺B型號的電扇收入1900元,列方程組求解;(2)設(shè)采購A種型號電風(fēng)扇a臺,則采購B種型號電風(fēng)扇(50﹣a)臺,根據(jù)金額不多余7500元,列不等式求解;(3)根據(jù)A型號的風(fēng)扇的進(jìn)價和售價,B型號的風(fēng)扇的進(jìn)價和售價,再根據(jù)一件的利潤乘以總的件數(shù)等于總利潤列出不等式,再進(jìn)行求解即可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)問題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:ADBC=APBP;
(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動,且滿足∠CPD=∠A,設(shè)點(diǎn)P的運(yùn)動時間為t(秒),當(dāng)DC=4BC時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎.該打車方式的計(jì)價規(guī)則如圖①所示,若車輛以平均速度vkm/h行駛了skm,則打車費(fèi)用為(ps+60q·)元(不足9元按9元計(jì)價).小明某天用該打車方式出行,按上述計(jì)價規(guī)則,其打車費(fèi)用y(元)與行駛里程x(km)的函數(shù)關(guān)系也可由如圖②表示.
(1)當(dāng)x≥6時,求y與x的函數(shù)關(guān)系式.
(2)若p=1,q=0.5,求該車行駛的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點(diǎn),求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長線于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列兩材料,并解決相關(guān)的問題.
(材料一)按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項(xiàng),記為,依此類推,排在第位的數(shù)稱為第項(xiàng),記為.一般地,若果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個常數(shù),那么這個數(shù)列叫作等比數(shù)列,這個常數(shù)叫作等比數(shù)列的公比,公比通常用字母表示,如數(shù)列為等比數(shù)列,其中,公比.
(材料二)為了求的值.可令
則, 因此,所以,
即
(1)等比數(shù)列的公比為_________,第6項(xiàng)是________
(2)如果一個數(shù)列是等比數(shù)列,且公比為,那么根據(jù)定義可得到,,,由此可得(用和的代數(shù)式表示)
(3)若某等比數(shù)列的公比,第2項(xiàng),則它的第1項(xiàng),第4項(xiàng),并求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,客輪在海上以30km/h的速度由B向C航行,在B處測得燈塔A的方向角為北偏東80°,測得C處的方向角為南偏東25°,航行1小時后到達(dá)C處,在C處測得A的方向角為北偏東20°,則C到A的距離是( )
A.15 km
B.15 km
C.15( + )km
D.5( +3 )km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢市光谷實(shí)驗(yàn)中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),下列說法錯誤的是( 。
A. 九(1)班的學(xué)生人數(shù)為40 B. m的值為10
C. n的值為20 D. 表示“足球”的扇形的圓心角是70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分線, 則圖中與∠FDB 相等的角(不包含∠FDB)的個數(shù)為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為支持四川抗震救災(zāi),重慶市A、B、C三地現(xiàn)在分別有賑災(zāi)物資100噸、100噸、80噸,需要全部運(yùn)往四川重災(zāi)地區(qū)的D、E兩縣.根據(jù)災(zāi)區(qū)的情況,這批賑災(zāi)物資運(yùn)往D縣的數(shù)量比運(yùn)往E縣的數(shù)量的2倍少20噸.
(1)求這批賑災(zāi)物資運(yùn)往D、E兩縣的數(shù)量各是多少?
(2)若要求C地運(yùn)往D縣的賑災(zāi)物資為60噸,A地運(yùn)往D的賑災(zāi)物資為x噸(x為整數(shù)),B地運(yùn)往D縣的賑災(zāi)物資數(shù)量小于A地運(yùn)往D縣的賑災(zāi)物資數(shù)量的2倍.其余的賑災(zāi)物資全部運(yùn)往E縣,且B地運(yùn)往E縣的賑災(zāi)物資數(shù)量不超過25噸.則A、B兩地的賑災(zāi)物資運(yùn)往D、E兩縣的方案有幾種?請你寫出具體的運(yùn)送方案;
(3)已知A、B、C三地的賑災(zāi)物資運(yùn)往D、E兩縣的費(fèi)用如下表:
A地 | B地 | C地 | |
運(yùn)往D縣的費(fèi)用(元/噸) | 220 | 200 | 200 |
運(yùn)往E縣的費(fèi)用(元/噸) | 250 | 220 | 210 |
為及時將這批賑災(zāi)物資運(yùn)往D、E兩縣,某公司主動承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用,在(2)問的要求下,該公司承擔(dān)運(yùn)送這批賑災(zāi)物資的總費(fèi)用最多是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com