【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y=的圖象相交于點A(﹣2,a),并且與x軸相交于點B.

(1)求a的值;

(2)求反比例函數(shù)的表達式;

(3)求AOB的面積;

(4)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

【答案】16;(2;(312;(4

【解析】

試題(1)直接利用待定系數(shù)法把A﹣2,a)代入函數(shù)關(guān)系式y=﹣x+4中即可求出a的值;

2)由(1)得到A點坐標(biāo)后,設(shè)出反比例函數(shù)關(guān)系式,再把A點坐標(biāo)代入反比例函數(shù)關(guān)系式,即可得到答案;

3)根據(jù)題意畫出圖象,過A點作AD⊥x軸于D,根據(jù)A的坐標(biāo)求出AD的長,再根據(jù)B點坐標(biāo)求出OB的長,根據(jù)三角形面積公式即可算出△AOB的面積;

4)求出直線與反比例函數(shù)的另一個交點,觀察圖象即可得到答案..

試題解析:(1)將A﹣2,a)代入中,得:,∴a=6

2)由(1)得:A﹣2,6),將A﹣2,6)代入中,得:,

反比例函數(shù)的表達式為:

3)如圖:過A點作AD⊥x軸于D,∵A﹣2,6),∴AD=6,

在直線中,令y=0,得x=4,∴B40),∴OB=4

∴△AOB的面積S=OB×AD=12;

4)由,得:,,,直線與反比例函數(shù)的交點為:(-2,6)和(6,-2),有圖象可知,當(dāng)時,一次函數(shù)的值大于反比例函數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形外取一點,連接、、,過點的垂線交于點.若,下列結(jié)論:①;②;③點到直線的距離為;④;⑤正方形.其中正確的是(

A.①②③④B.①②④⑤C.①③④D.①②⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE.

(1)求證:△ABD∽△AEB;

(2)當(dāng) = 時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點M是射線BC上一點,點N是CD延長線上一點,且BM=DN.直線BD與MN相交于E.

(1)如圖1,當(dāng)點M在BC上時,求證:BD-2DE=BM;

(2)如圖2,當(dāng)點M在BC延長線上時,BD、DE、BM之間滿足的關(guān)系式是什么?;

(3)在(2)的條件下,連接BN交AD于點F,連接MF交BD于點G.若DE=,且AF:FD=1:2時,求線段DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)y= (x>0)圖象上一點,過點P分別向x軸,y軸作垂線,垂足分別為M、N,直線y=﹣x+2PM、PN分別交于點E、F,與x軸、y軸分別交于A、B,則AFBE的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊ABCD中,AD=2AB,FAD的中點,作CE⊥AB,垂足E在線段AB上,連接EFCF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號都填在橫線上)

1∠DCF=∠BCD,(2EF=CF;(3SΔBEC=2SΔCEF;(4∠DFE=3∠AEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分線分別與AC、AB交于點D、E.

(1)在圖中作出AB的垂直平分線DE,并連接BD.

(2)證明:△ABC∽△BDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。

A. ①和② B. ②和③ C. ①和③ D. ②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)學(xué)習(xí)中,自變量取值范圍及相應(yīng)的函數(shù)值范圍問題是大家關(guān)注的重點之一,請解決下面的問題.

(1)分別求出當(dāng)2≤x≤4時,三個函數(shù):y=2x+1,y,y=2(x﹣1)2+1的最大值和最小值;

(2)若y的值不大于2,求符合條件的x的范圍;

(3)若y,當(dāng)ax≤2時既無最大值,又無最小值,求a的取值范圍;

(4)y=2(xm2+m﹣2,當(dāng)2≤x≤4時有最小值為1,求m的值.

查看答案和解析>>

同步練習(xí)冊答案