【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D為AC延長線上一點(diǎn),連接BD,AE⊥BD于點(diǎn)E.

(1)記△ABC得外接圓為⊙0,

①請用文字描述圓心0的位置;

②求證:點(diǎn)E一定在⊙0上.

(2)將射線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°后,所得到的射線與BD延長線交于點(diǎn)F,連接CF,CE.

①依題意補(bǔ)全圖形;

②用等式表示線段AF,CE,BE的數(shù)量關(guān)系,并證明.

【答案】(1)證明見解析(2)AF=2CE+BE

【解析】

(1)連接OC,OE, 可得OC=OE=OA=OB=AB,即點(diǎn)E在以O(shè)為圓心,OA為半徑的圓上,

即點(diǎn)E在△ABC的外接圓⊙O上.

(2) 過點(diǎn)C作CG⊥CE,與BF交于點(diǎn)G,可證的∠BCG=∠ECA及△ACE≌△BCG(ASA),可得BG=AE,EC=GC,由旋轉(zhuǎn)的性質(zhì)可得∠EFA=90°-∠EAF=45°=∠EAF,AE=EF,可得AF=2CE+BE.

(1)①線段AB的中點(diǎn);

②證明:如圖,

連接OC,OE,

∵AE⊥BD,

∴∠AEB=90°,

∵∠ACB=90°,O為AB中點(diǎn),

∴OC=OE=OA=OB=AB,

∴點(diǎn)E在以O(shè)為圓心,OA為半徑的圓上,

即點(diǎn)E在△ABC的外接圓⊙O上.

(2)①如上圖中所示,

②AF=2CE+BE;

證明如下:

過點(diǎn)C作CG⊥CE,與BF交于點(diǎn)G.

∴∠ECG=∠BCA=90°,

∴∠ECG+∠BCE=∠BCA+∠BCE,

即∠BCG=∠ECA.

∵E,A,B,C在以O(shè)為圓心,OA為半徑的圓上,

∴∠EAC=∠EBC.

∵BC=AC,

∴△ACE≌△BCG(ASA)

∴BG=AE,EC=GC.

∴在Rt△CEG中,EG=.

∵由旋轉(zhuǎn),∠EAF=45°,而∠AEF=90°,

∴∠EFA=90°-∠EAF=45°=∠EAF,

∴AE=EF,

∴在Rt△AEF中,AF=.

∵BG=BE+EG=BE+CE,

∴AF=2CE+BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,一臺燈放置在水平桌面上,底座AB與桌面垂直,底座高AB5cm,連桿BCCD20cm,BC,CDAB始終在同一平面內(nèi).

1)如圖②,轉(zhuǎn)動連桿BCCD,使∠BCD成平角,∠ABC143°,求連桿端點(diǎn)D離桌面l的高度DE

2)將圖②中的連桿CD再繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)16°,如圖③,此時(shí)連桿端點(diǎn)D離桌面l的高度減小了   cm

(參考數(shù)據(jù):sin37°0.6,cos37°0.8,tan37°0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線yx2bxc經(jīng)過矩形ABCO的頂點(diǎn)B、C,DBC的中點(diǎn),直線ADy軸交于E點(diǎn),與拋物線yx2bxc交于第四象限的F點(diǎn).

1)求該拋物線解析式與F點(diǎn)坐標(biāo);

2)如圖,動點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動;

同時(shí),動點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒個單位長度的速度向終點(diǎn)E運(yùn)動.過

點(diǎn)PPHOA,垂足為H,連接MP,MH.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t秒.

EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.

PMH是等腰三角形,求出此時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒中有4個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,隨機(jī)摸取一個小球然后放回,再隨機(jī)摸出一個小球.

(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;

(Ⅱ)求兩次取出的小球標(biāo)號相同的概率;

(Ⅲ)求兩次取出的小球標(biāo)號的和大于6的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,園林小組的同學(xué)用一段長16米的籬笆圍成一個一邊靠墻的矩形菜園ABCD,墻的長度為9米,設(shè)AB的長為x米,BC的長為y米.

(1)①寫出y與x的函數(shù)關(guān)系是: ;

②自變量x的取值范圍是 ;

(2)園林小組的同學(xué)計(jì)劃使矩形菜園的面積為30平方米,試求此時(shí)邊AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)利用業(yè)余時(shí)間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計(jì),制成如圖12所示的折線統(tǒng)計(jì)圖.

1)這組成績的眾數(shù)是   ;

2)求這組成績的方差;

3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,⊙O的半徑為r,若點(diǎn)P在射線OP上,滿足OP′×OPr2,則稱點(diǎn)P是點(diǎn)P關(guān)于⊙O反演點(diǎn),如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA60°,OA8,若點(diǎn)A'是點(diǎn)A關(guān)于⊙O的反演點(diǎn),求A'B的長為( 。

A.B.2C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC的邊長為4,以AB為直徑的圓交BC于點(diǎn)F,CF為半徑作圓,D是⊙C上一動點(diǎn),EBD的中點(diǎn),當(dāng)AE最大時(shí),BD的長為(

A.B.C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有四個球,這四個球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個球沒有任何區(qū)別.

(1)從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;

(2)從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(diǎn)(x,y)位于第二象限的概率.

查看答案和解析>>

同步練習(xí)冊答案